无机手性纳米构筑:细胞自噬过程诱导和可视化

来源 :第十五届固态化学与无机合成学术会议 | 被引量 : 0次 | 上传用户:hhbsoftware
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  利用纳米自组装技术,可以实现多种无机纳米材料的功能协同:如等离子手性增强、上转换发光增强等[1-3]。最近,我们课题组利用DNA 自组装技术,将核壳结构的金纳米颗粒组装成手性四面体结构,获得可调控的手性纳米结构[4]。在核酸框架设计时,其中一条的DNA 末端修饰有能被自噬标志物ATG4B 水解的多肽链,上转换纳米颗粒(UCNP)通过ATP 核酸适配体序列与核酸框架中部分核酸互补,而嵌入四面体结构内部(图1a-b)。将组装结构与细胞孵育,发现自噬发生时,四面体结构开始发生解离,使得其手性信号降低,而内嵌于四面体内部的上转换纳米粒子能够发生解离,使得被猝灭的上转换发光能够恢复。我们利用圆二色信号以及上转换发光信号,实现了细胞的自噬程度的定量分析以及细胞自噬过程的可视化表征。进一步研究发现,与L 手性纳米结构相比,D 型四面体结构在细胞内大量富集,引起细胞产生强烈的自噬反应(图1c)。自噬调控的紊乱与许多疾病的产生密切相关,该研究为日后精准调控自噬过程,人为调控细胞的生理功能提供了基础。
其他文献
由Keggin型钨磷酸、钨硅酸与三聚氰胺反应得到2例新型杂化物:(C3N6H6)3H3[PW12O40](1)和(C3N6H6)4H4[SiW12O40]·6H2O(2).在这两个化合物中,三聚氰胺都是质子化的.非常有趣的是,尽管是结构相同的Keggin型多酸与三聚氰胺反应,并且合成方法类似,但得到的杂化物组成有很大区别.三聚氰胺与钨磷酸反应得到的产物中不含结晶水,而与钨硅酸反应得到的产物含有6个
Metal-organic frameworks(MOFs)constructed from metal ions or metal clusters and organic ligands are a unique class of porous materials exhibiting important applications in the storage,separation and p
近年来,金属有机框架材料因含有可调控的孔道以及常具有丰富的氢键体系等,在质子导电方面的应用得到了迅速的发展.我们课题组最近致力于对取代咪唑二羧酸配体所构筑的MOFs质子导电的研究.本文采用对羧基苯基-4,5-咪唑二羧酸(p-CPhH4IDC)与Co(Ⅱ)反应制备出三维的MOF{[Co3(p-CPhH2IDC)3(4,4′-bipy)·H2O]·2H2O}(1),并对其质子导电性能进行研究.1中含有
多孔碳材料已经被广泛应用在许多领域.本项工作中,我们通过二氧化碳活化工艺,成功制备了三种不同形貌(颗粒、纳米线和纳米带)的氮掺杂多孔碳材料.通过改变聚吡咯前驱体的形态,氮掺杂碳材料的多孔性质和催化性能显著提高.在这些氮掺杂多孔碳材料中,具有纳米带形貌的氮掺杂多孔碳具有最高的比表面积(1130 m2 g–1).它在氧气饱和的KOH水溶液(0.1 M)中具有最好的ORR活性.这种增强的ORR性能可归因
由于在变形和旋转上的灵活性,四面体结构单元在传递氧离子上显示了一定的优势[1]。和间隙氧离子缺陷比较,氧空位很难在基于四面体的结构中稳定并发生迁移。孤立四面体阴离子白钨矿结构以往显示出间隙氧离子导电,但氧空位被发现难以在该结构中稳定并发生迁移。本工作中,我们利用粉末衍射,固态核磁共振谱,第一性原理计算,分子动态模拟等多个互补性的手段阐述了在孤立四面体阴离子白钨矿结构BiVO4中Sr对Bi的取代制造
向自然学习是构筑新材料和新器件的重要途径。近年来,主要从事微纳米多尺度结构的仿生构筑与浸润性调控方面的研究工作。揭示了部分生物材料表面多尺度微观结构与宏观特殊浸润性之间的本质关系,为超浸润性材料的仿生构筑提供了依据;仿生制备了系列超浸润材料;提出了仿生多功能集成材料的设计理念。仿生构筑了系列多功能化材料,并开展了材料在油水分离、集水、微液滴输运等领域的应用研究。
近几年,无机非金属材料,如纳米碳、六方氮化硼和硼碳氮等,被发现在很多重要的化学反应中展现出可观的催化活性[1]。硼是一个轻量的类金属元素,具有空的P轨道,一般能够和其他元素形成稳定的共价键,形成硼掺杂材料并赋予其高的热稳定、化学阻抗和机械强度等性质,使其在电催化,光催化,液相催化和热催化中都有重要的应用。例如,二元的硼碳,硼磷材料,由于他们可调节的带隙,在光催化反应中表现出非常高的催化活性;硼掺杂
锂空气电池是继锂离子电池之后的一种全新的高比能电池体系,其理论能量密度是锂离子电池的10倍以上。它的研发成功将是能源史上的一次重大突破。然而,受限于空气正极反应动力学和传质动力学慢、电解质和负极稳定性差、电极钝化等问题,锂空气电池潜在优势难以发挥,能量转换效率、倍率性能、循环寿命等均亟待提升。针对这些问题,我们设计与合成了系列碳修饰正极和碳替代正极,有效提高了正极的电化学稳定性,进而提高了锂空气电
金属有机框架和多孔有机聚合物是典型的多孔材料,它们通常具有比表面积大、化学和热稳定性高、合成方法简单多样和官能团化简单等优点,近几年来在气体吸附、异相催化和能量存储等领域引起了广泛的兴趣。它们不仅可以有效地负载纳米粒子,使纳米粒子均匀地分散在各种载体或反应介质中,还可通过电子和立体效应赋予纳米粒子一定的特性和功能,对纳米粒子的尺寸、形貌和性能等起着重要的诱导作用。同时,它们还可以作为硫的载体,使硫
酸碱中和反应中,其化学反应能量通常以热能的形式释放出来,这些能量很难收集利用.如何通过设计对酸-碱敏感的电化学反应,将酸碱中和反应的中和能(H++OH-= H2O,ΔG =-79 KJ mol-1,E = 0.828 V)以电化学能收集加以利用,对发展各种电化学能源存储与转换器件具有重要意义.在此,我们设计了一种基于析氢反应(HER)和氢氧化反应(HOR)的电化学中和能电池,该电池设计在阳极的碱性