丙烯酰酯类荧光探针的酰胺化作用机制研究

来源 :2018中西部地区无机化学化工学术研讨会 | 被引量 : 0次 | 上传用户:wangj30
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  氨基酸不仅在生命活动过程活中发挥着作用,而且还参与多肽、蛋白质等其他生物活性分子的代谢合成。在此,我们设计合成了一种新型带有羧酸基团的比率型荧光探针用于识别氨基酸。重要的是,作为20种天然氨基酸之一的半胱氨酸,由于其在生理条件下具有较高的亲核性,通过迈克尔加成诱导探针发生脱羧反应。值得注意的是,催化产物含有丙烯酸内酯环,进一步的实验结果揭示了基于丙烯酰酯类的荧光探针可以在氨基的作用下,发生酯水解反应并产生酰胺类物质。这种简便的酰胺化反应可以作为生物偶联剂,成为选择性化学位点修饰的一种有效手段。
其他文献
近年来,伴随裸露晶面与性能之间关系的深入研究,非球形金纳米晶的制备受到广泛关注。传统液相合成方法需要表面活性剂或无机配体来控制纳米晶生长动力学过程。在不引入表面活性剂和无机配体条件下,我们在电喷雾产生的微液滴中实现四面体和正二十面体等非球形金纳米晶的连续制备。
已知金属离子掺杂对NaYF4:Yb,Er 上转换发光材料的形貌和发光性质都有重要影响,然而目前还较少文献关注不同二价金属离子影响的横向比较。本文分别采用Mn,Ni,Mg,Cu,Zn,Ca,Sr,Ba 等八种二价金属离子为掺杂离子,对比了5%和10%两个不同M2+掺杂浓度对NaYF4:18%Yb3+,2%Er3+上转换发光材料的影响。
镍钴化合物具有良好可逆氧化还原活性且来源丰富,一直是超级电容器最佳电极材料之一.但其自身差的导电性导致可逆氧化还原反应仅仅发生在电极材料的表面,严重限制了电极材料的利用率,使得其实测比容量低于其理论比容量.近年来,我们以泡沫镍为镍源和模板,通过温和溶剂热法,将具有不同微纳米结构的镍基硫族化合物原位生长在泡沫镍的表面;并以现存的晶格作为模板,通过离子置换法引入有益阴/阳离子,相继制备出了鸟巢状Co9
研发高效的非贵金属基电催化水解产氢(HER)催化剂对于氢经济时代的到来具有重要意义.MoS2不仅展现出优异的HER性能,并且关于其活性位点的报道屡见不鲜.Chorkendorff等人通过实验证实2H-MoS2超薄片HER活性位点位于片的边缘,而面上位置对于HER反应是惰性的1.在此研究基础上,大量工作围绕增加MoS2边缘位置展开2.最近文献报道金属相(1T相或1T相)可以显著提高MoS2的HER活
超级电容器结合了传统电容器和充电电池的优势,成为一种新型的储能装置.而设计开发高性能超级电容器其关键在于提升电极材料的电化学性能.过渡金属硫化物以其高可逆氧化还原活性、良好的导电性、廉价易得等优势成为了超级电容器有前途的电极材料.然而单一金属硫化物受其组成简单所限,其储能性能存在不足,提高其电化学性能的简便有效途径是引入丰富的金属中心.但不同过渡金属离子形成硫化物时沉降速率不一致,导致极难得到纯度
Since the first Eu3+-β-diketonate complex was discovered by Weissmna in 1942 which emitted luminescence,lanthanide based fluorescent complexes have been intensively studied owing to their unique spect
量子比特是构建量子计算机的根本基石,由于电子自旋可以通过微波操控产生量子相干现象而成为量子比特的重要成员。自旋量子比特在国际上受到越来越多的关注,特别是最近三年来室温量子相干现象的发现为量子计算机的发展带来了新的曙光。我们课题组通过传统的交流磁化率表征手段结合脉冲EPR的测试对分子基量子比特进行研究。通过对配体和同位素等方式调节配合物的对称性,振动模式等等,得到了一些重要的发现。本论文我们通过不同
具有非中心对称结构的无机非线性光学(NLO)晶体材料在激光高新技术领域具有十分重要的应用,因此探索综合性能优良的新型NLO 晶体材料一直是非线性光学研究领域的重要课题并引起学术界和企业界的极大关注[1].其中,具有非中心对称结构的无机氧化物晶体材料由于结构畸变多样、带隙宽、热稳定性高和易于生长大尺寸晶体等特性获得青睐.I5+,Se4+和Te4+等阳离子,由于其外层电子结构中含有孤电子对,容易产生二
非线性光学(NLO)晶体材料在高技术激光领域具有极其重要的应用。对于一个优秀的中红外非线性光学晶体而言,除了要具备大的NLO效应、相位匹配、高激光损伤阈值、适当宽的透光范围和高的热稳定性等综合性能外,还须兼顾良好晶体生长习性,能够生长高质量大尺寸单晶,才能展示实际应用前景。
为推动癌症治疗手段的进步,专门针对光动力治疗设计的功能化抗癌试剂受到了研究者的广泛关注。[1,2] 在对芳基钌(Ⅱ)配合物持续研究的基础上,[3-5] 我们通过配位取代的方法设计并制备了一种适用于光动力治疗的功能化芳基钌(Ⅱ)配合物。通过将光敏化双芳基功能化席夫碱配体[6]以双齿螯合的配位模式引入到芳基钌(Ⅱ)配合物的分子结构中,使得目标芳基钌(Ⅱ)配合物具有可逆水解和光诱导活化两种功能。我们通过