【摘 要】
:
Development of effective technologies for clean and sustainable hydrogen energy has been attracting great attention lately,as hydrogen is hailed as a promising energy source to reduce our dependence o
【机 构】
:
New Energy Research Institute,School of Environment and Energy,South China University of Technology,
论文部分内容阅读
Development of effective technologies for clean and sustainable hydrogen energy has been attracting great attention lately,as hydrogen is hailed as a promising energy source to reduce our dependence on fossil fuels and benefit the environment by reducing the emissions of greenhouse and other toxic gases.
其他文献
与传统的锂离子电池电极材料相比,有机醌类化合物具有理论比容量高、来源丰富、成本低(不涉及昂贵元素)、设计加工简易和体系安全等优点[1].小分子醌类化合物在电解液中会出现溶解现象,造成电池循环性能降低.将醌类化合物单体通过某种方式聚合,形成聚合物,可能是解决溶解现象的有效方法之一.本文参考Song[2]实验方法,以四氯苯醌与Na2S缩合反应生成含醌硫醚聚合物.实验过程为:将四氯苯醌5.0g溶于150
随着锂离子电池技术的发展,市场对电池材料的性能提出越来越高的要求.研究者们关注于开发出具有高比容量、长循环稳定性和大倍率性能优异的电极材料.一系列钒基材料作为锂电池材料得到了广泛的研究[1,2],如LiMVO4(M=Ni,Zn,Cu,Co),Li3VO4,AgVO3,FeVO4,ZnV2O4,A3V2O8(M =Co,Ni,Zn)等.其中LiMVO4(M= Ni,Zn,Cu,Co)因价格低廉、具有
Three-dimensional(3D) porous metals with well defined ligament-pore structure show many exclusive structure-related properties that have been extensively studied for their potential applications in fu
The stability of hydrogen sensors is of great importance to devices working over a wide temperature range such as those in aerospace crafts working in low temperature environment.
传统电化学研究方法仅能获得电极表面整体的平均信息.但是在很多电化学体系中,电极表面的少数高活性的位点提供了电化学曲线中绝大多数信号,[1]而弱活性位点的信息以及不同活性位点之间的差异则无法通过传统电化学的方法获得.
Elastomers with high electrical conductivity are critical for applications ranging from seals between pipes used for transferring flammable gases,electrostatic automotive painting and electromagnetic
二氧化钛作为一种价格低廉,光电性能优异的材料受到了广泛关注[1,2].与传统二氧化钛薄膜相比,一维二氧化钛纳米管具有较多的光活性位点和较高的比表面积,在光电催化、储能[3]等方面应用广泛.
由于微流控系统具有反应比表面积大,时间短,连续性好,条件均一等特点,因此,通过微流控系统对纳米粒子进行形貌控制得到了广泛的研究,球形纳米粒子、三角形和六边形的纳米片、纳米棒等不同形貌、不同尺寸的纳米材料都得到有效的合成1-5.
The fast evolution of portable electronic devices and micro-electro-mechanical systems(MEMS) requires multifunctional microscale energy sources that have high power,high energy,long cycle life,and the
氢能已被普遍认为是一种理想、无污染的绿色能源,其燃烧值高且燃烧后唯一的产物是水,对环境不会造成任何污染,因此,氢能开发是解决能源危机和环境问题的理想途径.