Symmetric bursting of focus-focus type in the controlled Lorenz system with two time scales

来源 :第十二届全国非线性振动暨第九届全国非线性动力学和运动稳定性学术会议 | 被引量 : 0次 | 上传用户:ahanyin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
By employing a special feedback controlling scheme,a hyperchaotic Lorenz system with the structure of two time scales is constructed. Two kinds of bursting phenomena,symmetric fold/fold bursting and symmetric subHopf/subHopf bursting,can be observed in this system. Their respective dynamical behaviors are investigated by means of slow-fast analysis. In particular,symmetric fold/fold bursting is of focus-focus type,namely,both the up-state and the down-state are stable focus,which is di?erent from the usual fold/fold bursting;Symmetric subHopf/subHopf bursting is also of focus-focus type,which has not been reported in previous work. Furthermore,phase plane analysis has been introduced to explore the evolution details of the fast subsystem for symmetric sub-Hopf/subHopf bursting. With the variation of the parameter,symmetric subHopf/subHopf bursting can evolve to symmetric chaotic bursting or even hyperchaos.
其他文献
In this paper an almost-Poisson structure is constructed for the non-self-adjoint dynamical systems,which can be decomposed into a sum of a Poisson bracket and t
First-spiking dynamics and control of a mathematically modeled neuron under the stimulation of colored noise is investigated. For the uncontrolled model,the stoc
本文用分析的方法研究了n-维Filippov系统的grazing-sliding分叉的局部动力性状。在只有一个非连续面的Filippov系统中,一个周期轨道与非连续面中的sliding 区域相切时会产生s
By means of Man(a)sevich-Mawhin(M-M) continuation theorem,we will continue to investigate a thin plate system {D▽4ω+pha2ω/at2-a2ωa2φ/ax2ay2-a2ωa2φ/ax2ay2+2
The problem of controlling extreme events in spatially extended dynamical systems based on the observation only is studied in this paper. The control method we
For CH-γ equation ut+c0ux+3uux-α(uxxt+uuxxx+2uxuxx)=-γuxxx;in order to extend the peakon solutions,we choose α and γ as bifurcation parameters to make qual-i
利用Kalman滤波方法可以对机械系统振动信号中的微弱突变信号进行有效的侦测。本文首先给出了基于AR模型的机械系统振动响应的状态空间方程描述方法,在此基础上,提出了利用Kalm
本文基于精细积分算法提出分数导数型粘弹性结构动力学状态方程响应计算的数值方法,并利用所提出的数值算法,对具有分数导数项粘弹性振子自由振动方程进行了数值计算,最后与解析
基于动力系统的稳定性与分岔理论,以21个自由度的六轴机车系统为研究对象,采用沈氏蠕滑理论计算轮轨滚动接触蠕滑力,而轮缘力则用一有死区的分段线性函数来模拟。应用分析微分方
主要研究在非线性油膜力作用下,平行不对中转子系统的动力学建模和动力学特性。首先采用了长轴承非线性油膜力模型、微小的转子不对中量和不平衡量等基本假设,并引入转子间的位