壁湍流中最大减阻极限(MDR)普适性的框架机理

来源 :第九届全国流体力学学术会议 | 被引量 : 0次 | 上传用户:diahou
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  以高分子聚合物稀溶液槽道湍流减阻问题为研究对象,全面系统地数值模拟和分析了从减阻启始至最大减阻极限(MDR)过程中流动特性的变化及涡旋结构的特征。定义为聚合物弛豫时间对流向涡旋脉动时间尺度比值的有效Deborah数,从减阻启始到最大减阻极限(MDR)始终都保持着0(1)量级大小。但是,与流向涡旋脉动相关的对流时间尺度与涡旋旋转时间尺度的比值随减阻程度的增加而减少,并且当这两个时间尺度接近相等时,就得到了最大减阻极限状态。根据这些观测,我们提出了一个槽道壁湍流中减阻框架机理,不仅可以描述从减阻启始至最大减阻极限流动结构特征的变化,还可解释槽道湍流中最大减阻极限(MDR)的普适性。我们还进一步把该框架机理与其他减阻机制模型进行了比较,对一些湍流减阻现象进行了深入的解释说明和探讨。
其他文献
本文针对展向旋转槽道湍流开展了一系列的直接数值模拟。通过对这些数据的分析,我们再现了之前报道过的平均速度2Ω线性区。此外,我们还对流向速度脉动的高阶矩,雷诺剪应力,湍动能生成项等开展了研究,结果发现这些统计量在不同旋转数下也具有线性律。其中,雷诺剪应力的线性系数为1,湍动能生成项的线性系数为-2Roτ。通过对雷诺剪应力的线性律的进一步分析,我们还可预测旋转槽道湍流的完全层流化状态对应的旋转数Roτ
本文以宽高比的对流腔为实验对象,研究了湍流热对流中的高阶流动模态。作者发现在的对流腔中,一阶模态(对应大尺度环流LSC)起主导作用,高阶模态强度很低。而在停滞/反转的时候,二阶模态主导整个流动。我们在实验室上第一次给出大尺度环流反转的动力学过程。同时作者还发现通常所指的停滞并不是整个流动的停滞而仅仅是一阶模态(LSC)的停滞。作者还发现了一阶模态更有利于热传递。
螺度是三维正压流动(在适当边界条件下)的理想守恒量.在不可压缩流动中可体现各种效应[J.-Z.Zhu,Phys.Fluids 26,055109(2014)].当流动二维化但仍有三个分量,即(θ)z=0(只依赖与x和y坐标或说沿z方向平均)时,二维平面外的分量uz-uzz=θz是被动地为二维平面内水平流动uh=v所移流的,成为Prandtl数v/κ=1的不可压缩二维被动标量问题:(θ)tθ+v·▽
耗散场的统计特性不仅决定了Rayleigh-Bénard(RB)系统的传热效率Nusselt数(Nu),而且与湍流运动的局部脉动紧密联系。本文采用直接数值模拟(DNS)的方法,在宽高比的二维(2D)对流槽内对不同的Prandtl数(和)下的RB对流进行了计算。数值模拟的Rayleigh数(Ra)范围为,计算结果与Grossmann-Lohse理论符合良好。我们将流动的物理空间分为边界层(或近壁区)
热对流现象是自然界运动中的基本物理现象,它广泛存在于天体、太阳、地球地幔、大气环流和海洋环流等自然界中,以及核反应堆堆芯冷却系统、化工产品生产和电子元件设计等工程应用领域中.湍流热对流物理和流动特性的研究可以深化认识自然界中的对流现象,也可以对解决工程中的传热问题给出指导.Rayleigh-Bénard(RB)对流系统是研究热对流现象的最简单的物理模型之一.在RB对流系统中上下冷热底板上都存在边界
本文采用三维数值模拟方法,研究了阁楼形腔内自然对流对腔体高宽比的依赖。讨论了不同高宽比的腔体内瞬态自然对流发展过程的异同,分析了高宽比对充分发展阶段流态的影响,给出了流态间演化的临界瑞利数随三角腔高宽比的增大而增大。
对流现象广泛存在于自然界中.湍流热对流物理和流动特性的研究可以深化认识自然界中的对流现象,帮助解决工程中的传热问题,有重要的理论研究意义和实际应用价值.Rayleigh-Bénard (RB)对流系统是研究热对流现象的典型物理模型,是当今物理学和流体力学研究的热点问题之一.
会议
本文通过高效并行的二维直接数值模拟,得到了高Rayleigh数(Ra)湍流热对流的计算结果,对比了软湍流和硬湍流状态下热对流的流态特征.本文计算了尺度比Γ=1,Pr=4.3(水),Ra=109和Ra=1011两个典型算例,观察到两种状态下羽流形态和大尺度环流的动态特征有明显区别.硬湍流中出现了软湍流没有的随大尺度环流运动的中、小尺度漩涡和温度“孤岛”.由于流态的变化,软、硬湍流中高平面上局部热通量
狭缝隔板对流系统具有传热效率倍增特性。本文对该系统在不同狭缝高度和隔板数情况下流动特性进行分析,发现当系统隔板数增加到一定程度,系统流态从湍流状态变化到单向层流状态。不同隔板数单向层流状态的隔板对流系统传热效率成倍增加,最大值出现在同一狭缝高度。系统的温度分布特性会出现漂移,并与狭缝高度存在密切关系。定义表征温度特性的TD数,TD数与狭缝高度间存在标度关系。
含有变形运动边界的流动,物理区域/流动区域不仅几何形态不规则而且随时间变化。就此,我们已提出通过显含时间的曲线坐标系将物理区域微分同胚至几何形态规则且不随时间变化的参数区域/计算区域,并且一般将运动边界对应至平面。就此,我们已提出当前物理构型对应之曲线坐标系显含时间的有限变形理论,结合一般曲线坐标系下张量场场论,可以便捷地获得相关控制方程或物理量在曲线坐标系局部基下的表示,获得此种表示意于建立边界