【摘 要】
:
We present new spectral solvers for time evolution of Partial Differential Equations in general domains.Based on the novel Fourier-Continuation(FC)method for the resolution of the Gibbs phenomenon,the
论文部分内容阅读
We present new spectral solvers for time evolution of Partial Differential Equations in general domains.Based on the novel Fourier-Continuation(FC)method for the resolution of the Gibbs phenomenon,these methodologies give rise to essentially dispersionless evolution.
其他文献
为了研究主-侧链型 D-A 共聚物中共轭或非共轭侧链对其光电性能的影响[1,2],我们设计并合成了三种以苯并二噻吩-噻吩为骨架,不同侧链的主-侧链型 D-A 共聚物 PEHBDT-T-R,PEHBDT-T-TR 和 PEHBDT-T-TR.通过对聚合物的分子量、热稳定性、吸收特性、电化学性质、光伏性能和活性层表面形貌等的测试和分析,发现苯并二噻吩上大体积的烷基链对溶解性有利,但不利于聚合度的增加,
合成并表征了一种新的烷基噻吩取代的噻吩[2,3-f]并苯并呋喃(TBF)基聚合物 PTBFTDTBT.该聚合物有较高的分子量,良好的溶解性能,较宽的吸收光谱(300-700 nm)和相对较低的 HOMO 能级(-5.2 eV).用该聚合物作为电子给体材料,器件结构为 ITO/PEDOT:PSS/PTBFDTBT:PC71BM(1:2,w/w)/Ca/Al 时,在未经任何处理的情况下,得到了 6.4
Bulk heterojunction(BHJ)organic photovoltaics(OPV)are regarded as one of the most promising alternatives to inorganic-based solar cells.The efficiency exceeded 10%from single cells and 12%from tandem
由给体和受体组装的本体异质结在聚合物太阳能电池中具有重要的应用前景,但是对多组分组装体系的微区性能表征是一个难题。我们基于典型的聚合物太阳能电池体系,利于导电原子力显微镜对微区的光电性质进行原位性能表征,发现相分离结构和界面结构对太阳能电池的性能都具有重要的影响。我们基于此,提出了一种新的聚合物太阳能电池中调控微相结构和界面结构的新方法,基于此方法获得的太阳能电池的效率接近9%。
We report on a series of rigorous results on the existence of ground states and excited states for various weakly coupled,semilinear nonlinear elliptic PDEs arising in electronic structure models of m
The proper and efficient inclusion of electron correlation is a major challenge in molecular quantum chemistry.
胺基催化发展十余年来,有关a-取代酮的不对称催化转化仍是没有实现的挑战性难题。基于我们发展的仿生伯胺催化体系,成功实现了取代β-酮酯的不对称胺基催化反应。[1]最近还将胺基催化与有氧氧化相结合,实现了β-酮酯的不对称a-氧化胺化反应。[2]本次报告主要围绕上述进展。
In this presentation we deal with stochastic boundary value problems for nonlinear partial integro-differential equations.
In the multilevel Monte Carlo(MLMC)method numerous parameters have to be determined.
This work has been motivated by the observation that the harmonic approximation becomes inadequate when the coarse-grain variables undergo large changes.