Spatio-Temporal Modeling on Spheres

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:yuyuspecialshow
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Large spatial data are becoming more and more popular in environmental science and other related fields.
其他文献
In this talk,we provide bounds on the asymptotic variance for a class of sequential Monte Carlo(SMC)samplers designed for approximating multimodal distributions.
The uses of statistics in daily life and in the workforce are changing rapidly as data become more available to everyone.
This paper introduces a penalized nonparametric maximum likelihood estimation of the log-hazard function in analyzing right censored data.
Time series regression has two purposes-comprehend the functional dependence of variable of interest on covariates and forecast the dependent variable for future values of covariates.
In big data analysis for detecting rare and weak signals among n features,the Higher Criticism test(HC),Berk-Jones test(B-J),and some (o) -divergence tests have been proven optimal under the asymptoti
There have been many researches on the minimax convergence rates for covariance matrices under various covariance classes.
High-throughput expression profiling techniques bring novel tools and also statis-tical challenges to genetic research.
In this paper,we introduce a Feller-Pareto linear regression(FPLR)model based on the Feller-Pareto distribution.
We present a double bootstrap procedure for reducing coverage error in confidence intervals of summary statistics for independent and identically distributed functional data.
We show that,in the functional data context,by appropriately exploiting the functional nature of the data,it is possible to cluster the observations asymptotically perfectly in the case of different l