Optimization of thermoelectric efficiency in SnTe

来源 :第六届海内外中华青年材料科学技术研讨会暨第十五届全国青年材料科学技术研讨会 | 被引量 : 0次 | 上传用户:ylg2008asp
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  Lead-free SnTe compound shows promising good thermoelectric performance.However,stoichiometric SnTe is a strongly p-type semiconductor with a carrier concentration of about 1×1020 cm-3,which corresponds to a minimum Seebeck coefficient and zT.While in the case of p-PbTe(and n-type La3Te4)one would normally achieve higher zT by doping into the deeper band with higher valley degeneracy,SnTe behaves differently.It is the lighter,upper valence band is shown in this work to result in a higher zT.Therefore decreasing the hole concentration to maximize performance of the light band results in higher zT than doping into the high degeneracy heavy band.Here we tune the electrical transport properties of SnTe by decreasing carrier concentration with Iodine doping,and increasing the carrier concentration with Gd or Te doping.A peak zT value of 0.6 at 700 K was obtained for SnTe0.985I0.015 which optimizes the light,upper valence band,which is about 50%higher than the other peak zT value of 0.4 for GdzSn1-zTe and SnTe1+y which optimize the high valley degeneracy lower valence band.Some group Ⅲ elements such as indium are known to produce the resonant impurity states in Ⅳ-Ⅵcompounds.The discovery of these impurity states has opened up new ways for controlling the thermoelectric properties of Ⅳ-Ⅵ compounds.We carried out a detailed investigation of In as a resonant dopant in SnTe by co-doping with both indium and either Ag or I(extrinsic donors or acceptors)over a temperature range of 300-873K.A stabilization region was observed for co-doped SnTe with In and Ag acceptors(or I donors)in a small region,which we attribute to pinning of the Fermi level(electron chemical potential).With increasing dopant concentration(Iodine or silver),the Hall carrier concentration was proportional to supplementary impurity content.This means that only when the indium resonant states were saturated,the Fermi level could change linearly with additional dopant addition(doping region).Peak zT values(0.8 at 873K)were obtained on the boundary of stabilization region and doping region.
其他文献
利用Gleeble-3800热模拟实验机,通过高温等温热压缩实验,研究了在变形温度为900~1200℃、应变速率为0.1~10s-1条件下高氮不锈轴承钢流变应力的变化规律,测定了其真应力-真应变曲线,并利用光学显微镜分析了试验钢在热压缩过程中的组织演变及动态再结晶机制.结果表明:高氮不锈轴承钢的流变应力和峰值应力随变形温度的降低和应变速率的提高而增大;且变形温度越高,应变速率越小,试验钢越容易发生
会议
热轧带钢需要更加灵活的冷却控制策略,保证带钢按照设定的冷却路径冷却,以充分发挥冷却过程的相变、析出等强化功能。为此,本文提出了一种新的带钢温度控制方法,通过物理模型构造温度观测器在线观测带钢温度并根据测量温度在线修正观测器模型参数。在此基础上应用最优控制,实时优化各个冷却单元阀门设定,保证温度观测器估计值与目标温度分布曲线设定值偏差最小。实际应用结果表明该方法能够较好的控制带钢温度,同时能够克服固
会议
本文结合实测验证,采用有限元数值模拟方法研究了7085铝合金厚板淬火-预拉伸残余应力.研究结果表明:在厚度方向上,心部轧向分应力为47.5MPa,横向分应力为37.5MPa,表面轧向分应力为-34.1MPa,横向分应力为-36.3MPa,淬火残余应力模拟结果和实测结果吻合较好;并利用淬火残余应力实测结果优化了淬火有限元模型.随着预拉伸量的增加,淬火残余应力消减比例逐渐增加;经3%预拉伸处理后,在厚
会议
Due to the intrinsic inertness of titanium surface,and the long period(usually more than 4weeks)for deposition of a fully covered apatite layer through immersion in SBF [1],our research indicated high
会议
PbTe is known to be a promising thermoelectric material for waste heat recovery,so it has been the subject of extensive research and high thermoelectric performances have been obtained.Here,we will sh
会议
At the initial strain rate of 10-2 s-1,superior superplastic ductility of> 800%can be obtained at a wide temperature range(475~525 ℃)by adding 0.25 Sc and 0.10 Zr into a simple thermo-mechanical proce
会议
层状化合物由于具有特殊的结构、功能特性,在能源、环境等方面具有特殊的应用。在热电材料中,层状化合物具有本征的超晶格结构,能够增加界面及原子无序化对晶格声子的散射,获得低的热导率。除此之外,层状材料中电子传输通道,具有一定的局域化,有望获得高的电导率和西贝克系数。在本次报告中,将对Ca-Co-O和BiCuSeO两种p型层状结构进行研究,探讨层状结构材料的调控,特别是在纳米尺度方面的一些工作。对于Ca
会议
Half-Heusler(HH)compounds are important high temperature thermoelectric(TE)materials having attracted considerable attention in the recent years.High figure of merit zT values of 0.8~1.0 have been obt
会议
As a family of promising thermoelectric materials,the BiCuSeO oxyselenides have recently acquired ever-increasing attention thus being extensively studied.The figure of merit ZT of the BiCuSeO-based t
会议
Lead chalcogenides are dominant thermoelectric materials in the medium-temperature range,owing to their highly favorable electronic band structures and low thermal conductivities achievable.An importa
会议