论文部分内容阅读
Let (ε, D(ε)) be a quasi-regular semi-Dirichlet form and ( Xi)t≥0 be the associated Markov process. For u∈D(ε)lx ,denote Aiuu(Xi)-u(X0) and Ftu:= ∑01.We show that there exist a unique locally square integrable martingale additive functional(Y)and a unique continuous local additive functional (Z) of zero quadratic variation such that Atu=Ytu+Ztu+Ftu. Further, we define the stochastic integral t∫0V(X(s-))dAu , for V∈D(ε) loc and derive the related Itos formula.