【摘 要】
:
We have investigated degradation of co-evaporated CH3NH3PbI3 films using X-ray photoelectron spectroscopy (XPS), small angle x-ray diffraction (XRD), and atomic force microscopy (AFM).The CH3NH3PbI3 f
【机 构】
:
Hunan Key Laboratory for Super-microstructure and Ultrafast Process,School of Physics and Electronic
论文部分内容阅读
We have investigated degradation of co-evaporated CH3NH3PbI3 films using X-ray photoelectron spectroscopy (XPS), small angle x-ray diffraction (XRD), and atomic force microscopy (AFM).The CH3NH3PbI3 films have an excellent atomic ratio and crystal structure.The films were exposed to oxygen, air and water, respectively.The results indicate that CH3NH3PbI3 film is not sensitive to oxygen.Even after 1012L of oxygen exposure, no O signal can be detected on the surface.
其他文献
钙钛矿薄膜质量是器件性能好坏的关键性因素之一.通常采用简单的一步溶液旋涂方法制备钙钛矿薄膜,即将前驱溶液旋涂在基底上,然后退火晶化形成薄膜.该方法简单易行,但最大的问题是制备出来的薄膜不够平整,易出现孔洞,导致电池整体性能下降.也有研究者利用气相法制备平整的钙钛矿薄膜,但制备过程复杂,同时增加生产成本,所以溶液法仍得到大多数研究者的关注.因此,理解溶液法中钙钛矿薄膜的结晶过程,进而提高薄膜质量是非
Replacement of ZrO2 insulator layer in state-of-the-art TiO2/ZrO2/carbon structure by mesoscopic p-type NiO particles led to 39% increase of energy conversion efficiency of hole-conductor-free organom
The development of organic-inorganic halide perovskite solar cells (PSCs) is very fast recently.It is proved that a large mount of mobile ions exist in organic-inorganic halide perovskites.The accumul
Considering the remarkable progress in photovoltaic performance, scholars have focused on perovskite solar cells (PSCs) over the recent two years.1-3 TiO2 thin film is a semiconductor with a wide band
自2014年起,惟华光能开始进行钙钛矿太阳能电池的产业化开发.目前我们已经建立了一条钙钛矿太阳能组件试验生产线,在材料合成、涂布、结晶、背电极印刷、封装等工艺环节进行了大量实验.此生产线可以用于生产尺寸为40cmx60cm的钙钛矿组件.惟华光能已经建立了比较健全的产业化开发平台,期待与各科研院所建立更深入的合作,一起为实现钙钛矿太阳能电池的商业化生产而努力.
近年,新型钙钛矿太阳能电池引起了国内外研究学者的广泛关注.在短短的五年间,电池的光电转化效率已从3%迅速地攀升到了20.3%.这一研究领域已成为了当今太阳能领域的研究前沿和热点.虽然钙钛矿太阳能电池的材料和器件性能方面已取得令人瞩目的研究成果,但目前还存在着器件机理不够清晰,长期稳定性差等问题.近年我们课题组对钙钛矿太阳能电池的致密层,多孔层,钙钛矿层,空穴收集层,背电极,器件结构设计和性能评价以
The dissolution, or considered as corrosion of CH3NH3PbI3 (MAPbI3) in I-/I3-contained liquid electrolyte is a critical issue that hinders the development ofperovskite-sensitized solar cells (PSSC).In
近三年来,钙钛矿型太阳能电池(PSC)的光电转换效率不断取得突破,认证效率已经达到20.1%[1],但是,器件稳定性问题已经成为制约PSC产业化应用的瓶颈,PSC稳定性有不同的分类方法,在此将重点讨论PSC在水氧环境条件下的化学稳定性问题,同时介绍本组基于化学稳定性问题的界面修饰相关研究工作.在PSC制备和器件负载过程中,钙钛矿成膜前后界面直接影响器件中钙钛矿的化学稳定性,将重点展示钙钛矿成膜前后
It is reported that FAPbI3 perovskite has superior properties compared with the MAPbI3 system, such as extended absorption range,[1-3] higher phase transition temperature and better photostability.[4]
基于PEDOT:PSS/perovskite/PCBM结构的钙钛矿太阳能电池具有易低温溶液制备的优点.然而,金属电极(如Au,Ag)的费米能级与PCBM的LUMO能级之间存在接触势垒,直接导致此类器件极低的填充因子,并伴随有S型的J-V曲线.为了降低接触势垒,提高电子收集效率,人们常常采用在PCBM和金属电极之间插入一层界面层,如BCP,C60 [1-2]等.这类方法使得此类钙钛矿电池的制备较为复