【摘 要】
:
5-氟尿嘧啶(5-FU)是40多年来临床治疗结直肠癌、胃癌、乳腺癌等多种癌症的首选抗代谢化疗药物,但由于其对癌细胞和正常细胞的较低选择性,5-氟尿嘧啶在杀死癌细胞的同时也会严重损伤正常细胞,这给临床应用带来严重问题。为克服临床应用时的毒副作用,提高药效,将5-氟尿嘧啶(5-FU)进行靶向恶性肿瘤的药物设计是一个重要的研究方向。最近人们发现染色体端粒末端以及一些重要的肿瘤基因转录和启动调节区富含鸟嘌
【机 构】
:
温州大学纳米材料与化学重点实验室,浙江温州,325027
【出 处】
:
2009年第十五次全国电化学学术会议
论文部分内容阅读
5-氟尿嘧啶(5-FU)是40多年来临床治疗结直肠癌、胃癌、乳腺癌等多种癌症的首选抗代谢化疗药物,但由于其对癌细胞和正常细胞的较低选择性,5-氟尿嘧啶在杀死癌细胞的同时也会严重损伤正常细胞,这给临床应用带来严重问题。为克服临床应用时的毒副作用,提高药效,将5-氟尿嘧啶(5-FU)进行靶向恶性肿瘤的药物设计是一个重要的研究方向。最近人们发现染色体端粒末端以及一些重要的肿瘤基因转录和启动调节区富含鸟嘌呤碱基重复序列DNA,这种DNA在一些促进或稳定G-四螺旋因子的存在下,通过G G互联作用形成具有不同分子特性和螺旋取向的平行四链、二聚发夹和单聚折叠型的G-四螺旋高级结构。G-四螺旋的形成不仅能抑制癌细胞端粒酶活性,破坏以RNA序列为模板合成端粒DNA,进而抑制癌细胞的无限增殖,而且还能抑制某些肿瘤基因的表达。靶向G-四螺旋DNA的药物治疗不但可降低化疗药物的毒副作用和癌细胞的耐药性,而且可大大抑制肿瘤的复发,G-四螺旋DNA已成为目前很有前景的肿瘤治疗新靶点。为此,本文采用固定在金电极表面的G-四链DNA分子为靶点,以Fe(CN)63-/4-为电活性指示剂,运用循环伏安法研究了5-氟尿嘧啶短肽衍生物(R)/(S)-2-(5-氟尿嘧啶-1-基-乙酰基)氨基-1,5-戊二酸二甲酯(简称为(R)-5FUGlu和(S)-5FUGlu)与G-四DNA的相互识别作用。
其他文献
本文以市售纳米二氧化钛为载体,将机械化学法与原位还原碳化技术结合,成功制备了晶相组合多样的碳化钨与氧化钛纳米复合材料,较为系统地研究了复合材料晶相组合与电催化活性的关系,首次报道了在对硝基苯酚的电还原催化作用中,碳化钨与二氧化钛之间的协同效应。
PCBM是聚合物太阳能电池(PSC)中最有代表性的受体光伏材料,其优点是溶解度好、电子迁移率高,但其缺点是可见区吸收很弱以及其LUMO能级过低,受体过低的LUMO能级会导致光伏器件低的开路电压。为了进一步改进PSC的能量转换效率,笔者最近开展了新型富勒烯衍生物的设计和合成研究,并研究了这些新型富勒烯衍生物的电化学性质以及用电化学方法测量了它们的LUMO能级。为了研究PCBM取代基中的中间碳链长度对
Ⅱ-Ⅵ族半导体纳米晶体材料(简称纳晶)因其具有独特的尺寸调制的光电性质,和展现出的在光电器件和生物标记等领域内广泛的应用价值,而成为近年来基础和应用研究的热点。半导体纳晶的HOMO-LUMO能级位置(即能级结构)是重要的物性参数,也是纳晶器件化应用首先需要确定的参数。然而由于尺寸量子效应以及表面效应的影响,半导体纳晶的能级结构与本体材料相比有较大的差异,需要实验测定。遗憾的是目前国内外在此领域内的
层状氢氧化物具有稳定的氢氧化物层和居于层间的阴离子,其中可以引入层间的阴离子是多样的,又是性质各异的。层状氢氧化物[Ni4Al(OH)10]X (X为阴离子)在碱性二次电池正电极材料具有潜在的应用前景;近来针对其大电流充放电性能,作者对其进行了一些研究。不同层间阴离子与氢氧化物层相互作用的方式、作用力大小不同;以及在层间具有不同的迁移速度,这必然对电极材料电化学性质,尤其是大电流循环性能产生影响。
金属腐蚀是指金属与环境组分间发生化学或电化学反应而引起的金属表面破坏的现象,包括表面组成、形态和微结构的变化.金属腐蚀发生的原因是由其热力学不稳定性造成的.通过采取适当的措施可以在不同程度上减缓金属的腐蚀,但不能从根本上完全抑制腐蚀.然而从另外一个角度分析,腐蚀类型的多样化为利用其作为特殊的手段来设计与构建纳米结构的金属电极材料提供了一条新的途径.本文分析了利用腐蚀法制备纳米结构材料的特点,并介绍
本文报道一种新型、简便的电化学方法同时制备Pb、Sn纳米粒子和三维微-纳多孔薄膜。采用H型玻璃电解池和三电极系统,工作电极为Pb、Sn盘(片),工作面朝上。对电极、参比电极分别为不锈钢片和饱和硫酸亚汞。在NaOH空白溶液中,给金属Pb或Sn电极施加强阴极极化电势(-4~-5 V)时,金属表面生成对应的金属氢化物,同时析氢。室温下,氢化物不稳定,在溶液中迅速分解产生金属原子,聚集成原子簇和纳米粒子,
本文制备了聚阴离子多糖渗杂的PEDOT复合膜,并对其电化学性能、电性能、膜形态、粘结性能和力学性能进行了表征。研究中分别选用羧甲基纤维素、透明质酸钠、黄原胶、果胶及结冷胶等聚阴离子多糖作为电解质及掺杂剂,并与硝酸钾、硫酸钾等无机盐以及聚对苯乙烯磺酸钠、聚丙烯酸钠等聚阴离子作对比,在水体系中电化学聚合制备了不同电解质掺杂的聚3,4-乙撑二氧噻吩。
氧化锌(ZnO),作为宽禁带半导体材料及高的激子能(60ev),在激光、发光二极管(LED)、生物传感器等领域都拥有广泛的应用.近年来,越来越多的研究致力于开发基于ZnO的LED,然而,由于p掺杂型的ZnO低的空穴浓度和低的空穴传输速率,极大的限制了发光效率.因此使用其它宽禁带的p型半导体来替代p掺杂型的ZnO成为了一种很有前途的方法来实现ZnO材料的应用.本文使用P-CuSCN替代p掺杂型的Zn
当今诸多科学领域的研究对象也正在不断由宏观转向微观,同时也由原先的单一学科发展向交叉学科发展,在化学研究中,常规电极在某些特殊的条件下,如活体在线分析,样品量较少的微量分析方面有一定的困难,微电极具有很小的电极尺寸,与常规的电极相比,微电极上具有物质传输速率快、体积小等特点,可用于微环境的检测,与此同时微型电极还具有很高的传质速率,而且,被测体系中可以不加额外的支持电解质,被测样品也不需要过多的预
自从1991年Lijima发现了碳纳米管(CNT)以来,碳纳米管在电化学中已经得到了广泛的应用。纳米ZnO是一种新型宽禁带半导体光催化材料,具有良好的生物相容性和高的电子传递特性,在电化学传感器方面有着巨大的应用潜力。CNT和纳米氧化锌作为两种重要的纳米材料,在构建某些生物传感器方面具有协同作用。酪氨酸是一种重要的氨基酸,可以调节情绪和刺激神经系统。测定其含量具有重要的意义。酪氨酸裸电极上的过电位