论文部分内容阅读
我国是一个水产养殖大国,2015年我国水产养殖产量达4500万吨,占世界水产养殖总量的70%左右。随着水产养殖业的快速发展,对水产饲料的需求也越来越大。特别是近几年,我国对于水产饲料需求正高速增长,但我国水产养殖饲料的生产仍处于粗放型发展阶段,有些地区由于饲料盲目投放,不仅造成资源浪费,而且引发水污染问题和水产品健康问题。针对我国现阶段水产饲料在工艺和技术上得不到解决的现状,本论文开展浮性水产饲料的相关装备研究与试验研究。旨在通过双螺杆挤压膨化技术,达到节约资源、降低饲料成本、提高工作效率的效果,同时优化饲料生产工艺,提高饲料的品质。本课题来源于2016年农业部现代农业装备重点实验室项目,根据理论分析及项目需求,分析了膨化水产饲料在膨化过程中的微观机理,包括物料从有序到无序的转变、气核生成、模口膨胀、气泡生长和气泡停止生长或收缩五个部分。着重分析了水产饲料熔体气泡生长的过程,把细胞生长的物理模型应用到气泡生长,并建立相应的数学模型,最后选取合适的本构方程,计算出熔体外壳内外的压力与气泡半径、细胞半径的关系。研究设计了饲料喂料装置,减小了因喂料不均引起的饲料品质下降的影响。主要包括1)料斗的研究与尺寸设计;2)搅拌器的结构设计和尺寸安排;3)电机的选型和动平衡研究。并通过尺寸,生产制造了喂料装置。通过水产饲料生产的单因素试验探讨了螺杆转速、出料段机筒温度、物料含水率和喂料速度对水产饲料膨化度、容积密度、吸水性以及水中稳定性之间的关系,得出了每个因素对水产饲料品质影响的规律,并根据理论分析做出解释。根据单因素试验,采用三因素五水平的二次回归正交组合试验方案,开展了正交组合试验研究。通过Design-Expert 8.0数据分析软件,分别分析了螺杆转速、出料段机筒温度和物料含水率三者间的交互影响对水产饲料膨化度、容积密度、吸水性以及溶失率的影响,通过数据和图表清楚的揭示了自变量和因变量之间的规律。通过对水产饲料膨化度、容积密度、吸水性和溶失率最优目标函数的设定,确定了最佳工艺路线为螺杆转速31Hz,出料段机筒温度149℃,物料含水率17.5%。并进行了验证实验的数据与模型预测数据的对比,并且最后通过扫描电镜观察最优工艺路线下生产出的水产饲料的微观结构。