论文部分内容阅读
早在上世纪60年代塑料光纤就出现了,但是发展很缓慢。进入21世纪,随着互联网和多媒体技术的普及,人们开始追求高品质的生活和新技术。数据交互的速度和容量急剧增加,传统的双绞线和同轴电缆已经不能满足短距离高品质数据传输的需求。塑料光纤具有柔韧性好、损耗较小、带宽宽等优点,是理想的短距离数据传输介质。基于聚甲基丙烯酸甲酯的塑料光纤的损耗在100dB/km左右,使用长度不能超过l00m,限制了应用范围。研制廉价的塑料光纤放大器可以解决这个问题。共轭聚合物又被称为“有机半导体”,它既可以通过电激励发光也可以通过光激励发光,他还具有短的荧光寿命和高的荧光效率,适合作为光纤激光器和放大器的增益介质。本文探索了共轭聚合物CN-PPV掺杂塑料光纤的制备工艺,并研究了它的荧光特性和增益性质。具体完成的内容和取得的研究结果如下:(1)探索了PMMA作为纤芯材料的塑料光纤的制备工艺。通过文献阅读和多次实验总结,研究了聚合温度、聚合时间、链转移剂及引发剂含量等参数对光纤预制棒、光纤拉制过程及光纤质量的影响,确定了优化的实验参数。通过这些优化的的实验参数,获得了透明的、无小气泡的PMMA预制棒;在150℃-160℃温度范围内成功拉制PMMA光纤。此外还研究了塑料光纤端面抛光方法。(2)研究了共轭聚合物CN-PPV掺杂塑料光纤的荧光特性。测量了CN-PPV在PMMA薄膜中的发射光谱和吸收光谱,通过相关公式求出了它的发射截面随波长的变化曲线,得到σemax=1.7×10-20m2。利用侧面泵浦方法,测试了掺杂光纤发射光谱随泵浦光传输距离变化的关系,发现光谱发生明显红移,在455nm处发射光谱峰值位置向长波长移动了12nm。(3)从理论上分析了掺杂CN-PPV塑料光纤的增益特性。通过求解速率方程和脉冲传输方程,分析了不同掺杂浓度光纤的信号增益随泵浦功率的变化。了解到掺杂浓度为1ppm的光纤的最大增益为25dB;50cm长的光纤,掺杂浓度为0.2ppm时具有光放大能力。这对研究CN-PPV掺杂光纤放大器和激光器有一定的参考价值。