【摘 要】
:
尾矿坝是矿山生产中重要的组成部分,同时也是重大的环境污染源和危险源。尾矿坝的安全研究已成为矿山工程领域重要的课题,干滩长度是衡量尾矿坝安全稳定性的重要指标之一。本文提出一种基于深度学习的干滩长度测量方法。本文的主要研究重点:利用深度学习训练可以分割干滩水面分界线的模型,根据图像分割结果选取干滩水面分界线上的像素坐标点作为参考点,并通过单目测距模型推导参考点与实际干滩长度之间的转换公式,进而求得干滩
论文部分内容阅读
尾矿坝是矿山生产中重要的组成部分,同时也是重大的环境污染源和危险源。尾矿坝的安全研究已成为矿山工程领域重要的课题,干滩长度是衡量尾矿坝安全稳定性的重要指标之一。本文提出一种基于深度学习的干滩长度测量方法。本文的主要研究重点:利用深度学习训练可以分割干滩水面分界线的模型,根据图像分割结果选取干滩水面分界线上的像素坐标点作为参考点,并通过单目测距模型推导参考点与实际干滩长度之间的转换公式,进而求得干滩长度测算值。本文的主要研究工作包括:第一,改进了一种特征金字塔的网络结构,提升了图像分割准确度。首先介绍目前已有的图像分割方法及其特点,然后对Mask R-CNN网络结构进行分析,针对Mask R-CNN网络结构在大尺寸目标问题识别率并非最优方面的问题,对特征金字塔网络结构进行改进,加入一条自下向上的反向侧边连接,再与融合多尺度特征映射图相结合。通过实验比较,改进的网络结构在大尺寸目标问题识别上相比原始网络结构提高了6.3%。将网络运用到干滩图像识别分割上,分割结果清晰准确。第二,提出了一种基于单目测距的干滩长度测量方法。基于传统的单目测距模型,分析尾矿库干滩实际情况,建立加入俯仰角的单目测距模型来计算干滩长度,将干滩水面分界线的参考点像素坐标值通过干滩长度测算公式转换为干滩长度,并分析误差由来,减小误差。本文方法解决了传统干滩长度测算方法识别率差,准确率低等弊端,降低了公式计算过程复杂程度。在陕西省某尾矿库测试该测量方法的相对误差小于1.12%。第三,设计和开发了基于深度学习的干滩长度测量原型系统。基于Py Qt5可视化工具包在pycharm平台上编写干滩长度测量系统。该系统通过上传干滩图片测算干滩长度,主要包括图像分割功能,长度计算功能和参数设置功能,该系统运行流畅,使用简单,测量结果误差小,可以满足干滩长度测量的需求。
其他文献
随着武器装备的飞速发展,空战环境日益复杂多变,现代战场呈现出高度智能化的特点。威胁评估作为一种辅助决策工具,可以提高指挥员对战场的实时感知能力,帮助指挥员快速、准确地判断战场形势,从而做出科学、有效的战术决策。本文以地面防空为背景,展开研究空中目标威胁评估的相关问题。论文的主要研究内容如下:(1)针对空中袭击目标,建立威胁评估模型。在建模过程中综合考虑诸多因素,通过相关系数和Alpha系数确定威胁
区块链是数字经济发展中的一项重要技术,已被纳入国民经济十四五规划纲要中。区块链技术的应用范围正在迅速扩张,已经从虚拟货币扩展到了与金融、物流、政府以及医疗等各种行业的结合。然而,在区块链技术飞速发展的今天,区块链网络间的数据协同需求也在日益上升,由于不同区块链在底层架构、共识机制以及消息协议等方面的不同,导致区块链生态形成了“数据孤岛”的局面,无法进行数据交互。在现如今大量的联盟链应用场景中,跨链
软件等信息技术产业的不断发展,使软件的功能和组成结构日趋复杂,而复杂的软件结构导致软件安全事件频发,使工业生产和社会安全受到了严重威胁。大部分软件安全问题来自于软件源代码本身存在的安全风险,因此,近年来软件源代码安全问题得到社会各界的广泛关注。面对软件漏洞利用问题的快速增长,如何快速有效地对软件源代码进行漏洞检测,是当下信息安全研究领域的热门研究问题。传统的静态漏洞检测方法大多依赖于人工定制的漏洞
随着互联网技术的飞速发展,在为人们带来便利的同时,也产生了海量的数据,使人们面临选择困难的窘境。推荐系统能够根据用户画像,从海量信息中筛选出用户感兴趣的内容,产生个性化推荐列表给用户,从而有效解决信息过载问题。近年来,基于深度学习的推荐算法占据主导地位,在电影推荐中,引入深度学习模型来提取用户行为序列特征,精准刻画用户画像,有助于改善推荐效果。推荐系统的设计要兼顾准确性以及高效性,所以通常采用分级
随着我国经济的飞速发展和科技的不断进步,各行各业对于信息和知识的需求日益增加。在各个行业中,金融领域对于信息和知识的需求更为突出。然而金融信息量迅速增长以及大量非结构化的金融公告文本的存在,给金融研究团队在信息处理和公告研读的工作中带来了困难。为了解决这一问题,金融知识库应运而生,该知识库旨在从海量文本中抽取出相关的实体、关系以及属性等信息,以帮助人们更好地了解和把握市场的发展动态和趋势。本文旨在
信息化作战环境下防空面临的形势异常严峻,对空袭目标进行准确有效的威胁评估有助于指挥员快速判断战场形势并做出决策。但空袭目标先进的武器装备及复杂的作战方式使战场中捕获到的态势信息愈加繁多,准确进行威胁评估的难度增大。为了提高威胁评估的精确性,论文从以下几个方面展开研究:(1)建立空袭目标威胁评估指标体系。充分考虑空袭目标的威胁属性,根据评估指标选取过程需要遵循的系统性、科学性等七个原则,结合相关学者
知识是人类文明发展的基石,随着科技的进步,知识图谱提供了一个全新的手段,使得人们能够更好地管理和运用知识。近年来,伴随着深度学习技术的迅猛发展,为自然语言处理任务提供了强有力的支撑,使得知识图谱的研究与应用上也取得了巨大的成就。通过知识抽取,可以将复杂的信息转换为有序的、可操作的、可视化的知识三元组,进而运用知识融合手段构建领域知识图谱。基于当前技术和算法,本文综合分析了海量的金融文本数据,构建出
三维模型是人们认识世界的主要方式,而三维重建是指将目标不同角度下的二维图像复原成三维模型的技术,基于图像的三维重建技术在医疗影像、游戏开发、军事侦察等领域具有非常重要的应用价值和广阔的发展前景。传统的三维重建方法需要手工设计参数和特征矩阵,在不同的外界环境影响下,三维重建的效果差别较大。近年来,由于深度学习技术在计算机视觉方向的广泛应用,有学者开始将深度学习技术应用到三维重建领域。早期的三维重建网
工控协议是工业软件的重要组成部分,作为工业软件主要的信息传输规范,品类繁多的工控协议更容易产生漏洞风险。因此,近年来工控协议安全风险作为安全热点问题被广泛关注。针对开放且繁多的工控协议,如何快速有效的对其进行漏洞检测是当下工业安全领域中的研究热点。模糊测试作为工控协议漏洞检测的常用途径,然而传统的模糊测试方法存在,模糊测试效果不佳,且需要针对单一协议需要具体分析工控协议的格式信息,缺乏泛用性等问题
无线传感器网络(Wireless Sensor Network,WSN)的出现,为环境监测、智能家居等领域带来了巨大的变革。但随着人们对于网络的需求逐渐多样化及网络规模逐渐变大,随之而来就导致了在传统算法下数据传输性能变差的问题。对此,分簇的思想逐渐用于优化数据传输。但现有的分簇算法的节点之间所拥有的信息是有限的,仍然存在着考虑参数不全面的问题,特别是基于WSN中节点一对多及多跳通信的特点导致不能