论文部分内容阅读
大豆胞囊线虫(Soybean cyst nematode,SCN,Heterodera glycines)是一种危害严重且难以防治的植物病原线虫,每年给中国乃至世界的大豆生产均造成巨大的经济损失。应用抗病品种是防治大豆胞囊线虫病最经济有效的措施之一。黑龙江省是中国大豆的主要产区,也是大豆胞囊线虫的发病区。全面了解大豆胞囊线虫在黑龙江省的发生与分布情况,分析群体毒力遗传多样性,以及筛选鉴定和充分利用抗性大豆品种,对安全防控大豆胞囊线虫病具有指导意义。本研究从毒力表型层面分析了大豆胞囊线虫不同地理群体的致病性分化情况,开展黑龙江省大豆胞囊线虫毒力类型和生理小种分布分化及遗传多样性研究;鉴定了大豆品种资源对线虫的抗性;研究生产上抗性品种的遗传规律;利用重测序技术对抗线虫12进行全基因组遗传变异挖掘,并在大豆胞囊线虫胁迫下进行了抗线虫12抗病基因筛选和验证。取得了以下研究结果:1.黑龙江省大豆胞囊线虫毒力类型鉴定采用生理小种和HG Type类型两种鉴定方法,利用国际上通用鉴别寄主对黑龙江省大豆胞囊线虫群体62个样本进行了毒力表型的鉴定。共鉴定出11个HG类型,除了HG Type 7和HG Type 1.3.7外,HG Type 0、1.2.3.5.7、1.2.3.7、1.3.4.7、2、2.5.7、2.7、6、6.7等9个HG类型为黑龙江省首次报道。HG Type 7占测试总数的45.16%,HG Type 0占30.65%。HG Type 1.2.3.5.7是调查群体中毒力最强的。在PI548402上,大豆胞囊线虫雌虫指数大于10的种群类型占12.9%,毒力范围为10-48.99。PI88788毒性群体FI指数范围为10-29.93,PI548316毒性群体FI指数范围为10-65.86;供试群体中PI437654毒性群体占4.84%,比例最低。共发现5个大豆胞囊线虫生理小种,分别是1号、3号、4号、6号和14号。其中3号生理小种占测试总数的64.52%,是优势生理小种。其中大庆长期定位病圃3号生理小种对应HG Type7类型,安达定位病圃14号小种对应HG Type 1.3.4.7类型。2.鉴定了黑龙江主栽大豆品种对胞囊线虫的抗性本研究评价了110份大豆种质资源对HG Type 7(SCN3)和HG Type1.3.4.7(SCN14)的抗性,110份材料中无表现免疫的品种。5份大豆品种对HG Type 7表现为抗病,占鉴定材料总数的4.55%;19份表现为中抗,占鉴定材料总数的17.27%;有86份表现为感病,其中63份表现为高感、23份表现为中感,占鉴定材料总数的78.18%。有2份品种抗线虫12和庆豆13对HG Type 1.3.4.7表现为高抗,占鉴定材料总数的1.83%;6份表现为中抗,占鉴定材料总数的5.50%;其余材料表现为高感或中感。抗线虫12和庆豆13等8个大豆品种兼抗两种毒力群体。田间小区测产试验结果表明,抗病品种抗线虫12的产量明显高于感病品种合丰50。生防菌剂菌线克SN101的使用对抗线虫12无增产作用,却显著增加了感病品种合丰50的产量,抑制了线虫的增殖,轮作地块增产22.94%,连作地块增产33.35%。3.抗线虫12和庆豆13对大豆胞囊线虫抗性遗传分析抗线虫12和庆豆13对大豆胞囊线虫HG Type 7(SCN3)和HG Type1.3.4.7(SCN14)均具有良好抗性。抗线虫12和庆豆13分别与感病品种合丰50杂交,获得210个F2:3(合丰50×抗线虫12)和336个F2:3(合丰50×庆豆13)杂交后代,并对其抗性遗传进行了研究。卡方分析结果显示:抗线虫12对HG Type 7(SCN3)的抗性由3对隐性基因控制的(rhg rhg rhg),对HG Type 1.3.4.7(SCN14)抗性则符合1对显性基因和2对隐性基因控制的基因模型(Rhg rhg rhg)。庆豆13的遗传规律符合1对显性基因和3对隐性基因控制的遗传模型(Rhg rhg rhg rhg)。抗线虫12和庆豆13对胞囊线虫的抗性是由多基因控制,根据亲本遗传系谱分析抗线虫12的抗性来源于Peking。4.基于全基因组重测序的抗线虫12遗传变异信息发掘为全面揭示重要抗源材料抗线虫12的全基因组突变类型及品种抗性机理,对抗线虫12进行全基因组重测序,测序深度33.47×,与参考基因组Williams 82相比,共获得1974863个SNP,12941个CNV,241356个Indel,17067个SV。提取注释结果中高质量的SNP和Indel,进行GO分类和KEGG富集分析,分别注释到30个条目,共富集到植物激素信号转导等20个代谢通路中。结果表明,这些变异基因和代谢途径在抗线虫12抗胞囊线虫过程中发挥了重要作用。对rhg1抗性位点进行CNV分析进一步分析,抗线虫12的广谱性抗性机制可能与rhg1位点的拷贝数变异相关,并且同时需要rhg1-a和Rhg4。分析发现5个基因,Gm NPR1-1,Gm ACS9b,Gm SAMT1,Gm PAD4和Gm EDS1等可能与抗线虫12的抗性相关。5.抗线虫12抗性相关基因的筛选及验证利用ge Norm,Normfinder,Bestkeeper和Ref Finder对内参基因表达稳定性进行评价,筛选获得ELF1A(Glyma.05g114900)基因和UBC4(Glyma.18g216000)基因稳定表达,适合作为线虫侵染早期抗线虫品种抗性分析的双内参基因。验证了5个抗性相关基因于线虫侵染72 h时在抗线虫12根部均显著表达;其中抗病相关蛋白基因Gm EDS1相对表达量最高,是对照的10.43倍,水杨酸甲基转移酶基因Gm SAMT1是对照的8.86倍,非表达致病相关蛋白基因Gm NPR1-1是对照的6.79倍,肽酰基精氨酸脱亚胺酶基因Gm PAD4是对照的5.54倍,腺苷蛋氨酸合成酶基因Gm ACS9b是对照的2.3倍。在大豆胞囊线虫胁迫下,抗线虫12品种中的5个基因Gm EDS1,Gm NPR1-1,Gm ACS9b,Gm SAMT1和Gm PAD4在胞囊线虫侵染早期均发挥了重要作用,但其与抗性遗传分析中的rhg1位点关联性需要进一步深入研究。