论文部分内容阅读
多孔碳具有高比表面积,化学稳定性强,成本较低,因而是一种极具前景的电化学能源存储材料。近年来,其复杂的孔结构和表面性质、以及较差的导电性限制了其广泛使用。针对上述问题,本研究工作设计并制备了具有层次化结构的多孔碳材料,包括层次化的孔结构、层次化的表面元素组成以及层次化的晶体结构,来实现电化学能源存储过程中的高容量和高通量,并详细探究了层次化结构与电化学储能性能之间的联系。设计了层次化的孔结构。首先,采用低浓度水热法,以嵌段共聚物F127作为软模板合成了具有层次孔结构的多孔碳纳米球材料,结果表明其连通的层次孔结构和纳米尺寸有利于电极材料的快速充放电。其次,以上述多孔碳纳米球为原料,采用KOH化学活化的方法进一步增强其孔结构,在保持其层次化孔结构的同时,提高了其比表面积。获得的活化多孔碳纳米球材料表现出243 F g-1,198F cm-3的高容量,以及20 A g-1高电流密度下容量保持67%的优秀倍率性能。在层次化孔结构的基础上设计了层次化的表面特性。具体来说,本研究工作采用氨气处理的方法对层次孔结构的多孔碳材料进行表面改性,进行丰富的表面氮元素掺杂。首先,采用F127作为软模板,二维氧化石墨烯作为生长基底,合成了具有层次孔结构的碳纳米球/石墨烯复合材料,再通过后续氨气气氛下热处理进行氮元素表面掺杂,将此种材料用于超级电容器和锂离子混合电容器时表现出优异的高功率性能。在超级电容器应用中,在80Ag-1的超高电流密度下容量保持48%;在锂离子混合电容器应用中,其功率密度可达336k Wkg-1。其次,以柠檬酸镁为硬模板,通过柠檬酸镁热解制备出具有发达层次孔结构的多孔碳材料,并通过后期氨气处理进行表面氮元素掺杂,所制备的氮掺杂层次孔结构多孔碳在锂硫电池应用中可实现超高的载硫量,高容量和高倍率,在超级电容器和锂离子混合电容器中也表现出高容量、高倍率的优秀性能;也通过柠檬酸镁/柠檬酸钾混合热解结合后续氨气气氛热处理的工艺制备出氮掺杂层次孔碳纳米片材料,将其用于超级电容器和锂硫电池时均可表现出优秀的倍率性能。最后,进行了层次化晶体结构的设计。本研究工作采用钴源作为石墨化催化剂,采用含氮有机物作为碳源前驱体实现氮元素掺杂,采用锌源作为硬模板制造层次化孔结构。将同时具有层次化孔结构、表面组成以及晶体结构的该多孔碳材料应用于锂硫电池,可表现出高容量和优异的倍率性能。