论文部分内容阅读
焦炉煤气合成甲醇的关键在于其深度脱硫,有机硫的加氢脱硫程度是影响甲烷转化催化剂和甲醇合成催化剂寿命的重要因素。将镁基储氢材料用于焦炉煤气中含硫化合物的加氢脱硫是解决此问题的一项应用基础研究。本文以氢气反应球磨法制备了镁基储氢材料,对影响镁基储氢材料制备的关键参数——碳原料种类、Mg/C配比、金属催化剂、球磨时间等进行了研究;以焦炉煤气中二硫化碳和噻吩为镁基储氢材料加氢反应的对象,对镁基储氢材料放出的氢与二硫化碳和噻吩之间的加氢反应进行了对比,并对含硫化合物加氢反应的影响因素进行了研究,探讨了镁基储氢材料供氢与含硫化合物加氢的反应机理。碳原料是制备镁基储氢材料优良的分散剂、助磨剂和改性剂。无烟煤经脱灰、碳化可脱除煤中碳骨架上氢原子和氧原子,制得具有类石墨晶体结构的微晶碳。添加微晶碳40 wt.%制得的镁基储氢材料60Mg40C颗粒大小均匀,粒度为30~50nm,且微晶碳在储氢材料中的分布较均匀,没有团聚现象。微晶碳含量为30 wt.%和40 wt.%时,材料的储氢密度较大,分别为4.93wt.%和4.78 wt.%。微晶碳含量过少或过多都会使材料的储氢密度降低。针状焦比微晶碳对镁粉具有更加优异的分散性能,添加10 wt.%即可使粉体避免冷焊和粘附。针状焦在球磨过程中易发生非晶化。针状焦添加量对储氢材料储氢密度的影响显著,添加量为5 wt.%时材料的储氢密度可达4.35 wt.%,但添加量超过10 wt.%时,材料的储氢密度变得很低。活性炭对镁粉也具有良好的分散作用,添加20 wt.%可使粉体不发生冷焊和粘附。在保证镁碳粉体分散性的同时,活性炭的添加量越高,材料的储氢密度越低。XRD显示,添加以上碳原料制备的镁基储氢材料中,Mg为主要的储氢体。此外,添加微晶碳、针状焦、活性炭可降低镁基储氢材料的放氢温度。金属催化剂Al、Co、Fe、Mo的添加能降低储氢材料的放氢温度,改善材料的放氢性能。其中添加Co的储氢材料50Mg40C10Co的初始放氢温度最低,为210.7℃。金属催化剂的含量以4 wt.%-7 wt.%为宜,所制储氢材料具有较明显的放氢吸热峰和较低的放氢温度。球磨时间能明显影响储氢材料的储氢性能,适宜的球磨时间为4 h。储氢材料的循环吸放氢对材料的储氢性能并没有明显改善,随着循环次数的增多,储氢密度会衰减。Co、Mo、Ni三种金属的协同作用可有效降低材料的放氢温度。储氢材料的成型性能与储氢材料中的金属含量有关,不同硬度的金属相互嵌合,可使材料的成型性能提高。储氢材料60Mg35C5Mo对二硫化碳进行加氢反应时,产物中有Mg和H2S生成,反应温度在350℃时,储氢材料中氢转入H2S的比例最高,为20.55%;对噻吩进行加氢反应时,产物中有MgS和H2S生成,反应温度在300℃时,储氧材料中氢转入H2S的比例最高。温度过低或过高都不利于含硫化合物利用储氢材料放出的氢进行加氢反应,只有在特定温度区间内才能促进储氢材料放氢与含硫化合物加氢,生成更多的H2S。反应温度对加氢反应具有重要的影响,影响着储氢材料的放氢与供氢,还影响着储氢材料对含硫化合物加氢反应的程度。二硫化碳和噻吩与储氢材料进行加氢反应的活性不同,二硫化碳的C-S键键能较低,比较容易断裂,而噻吩由于具有硫杂环的芳香性,较难发生加氢反应。二硫化碳加氢反应采用连续操作的管式反应器,载气连续流动,含硫化合物与储氢材料的接触时间短,反应管内载气温度受流速影响,进入反应区后载气温度经加热才能达到反应温度。噻吩加氢反应的高压反应釜装置虽然可以延长噻吩与储氢材料的接触时间,但整个反应过程密闭,随着反应的进行,反应物浓度降低,对反应产生不利影响。碳原料中以添加微晶碳制备的镁基储氢材料对含硫化合物的加氢反应性能改善效果最好,金属催化剂以Mo对加氢反应的催化作用最好。镁基储氢材料供氢与含硫化合物进行加氢反应,微晶碳对镁基储氢材料的供氢提供了扩散通道,金属催化剂对镁基储氢材料的供氢起到催化作用。