褪黑激素衍生物的合成及其生物活性探究

来源 :五邑大学 | 被引量 : 0次 | 上传用户:hensun01
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
褪黑激素是一种由人脑中松果体分泌的具有抗氧化活性的激素,可高效的清除自由基,在神经-免疫-内分泌系统中起重要作用。研究表明,补充褪黑激素是帕金森病(PD)的一种潜在治疗策略,其可抑制PD中与氧化应激相关的通路。此外,褪黑激素也可改善PD患者的一些非运动症状。但由于PD的病因尚不明确,并且未发现对PD的预防和治疗有效的药物。因此,以褪黑激素为先导化合物,开发新型褪黑激素衍生物,有望为发现治疗PD症的新策略提供线索。本论文将褪黑激素分别与含有不同取代基的苄溴、苯硼酸和肉桂酸发生反应,合成了三类具有多样性特征的褪黑激素衍生物,共37个化合物。在N1位,合成了16个褪黑激素衍生物79a~79p;在C2位,合成了11个褪黑激素衍生物83a~83k;在C7位,合成了10个褪黑激素衍生物88a~88j。本论文首先通过体外抗氧化实验ABTS和ORAC法对褪黑激素衍生物的抗氧化活性进行筛选。实验结果显示,褪黑激素衍生物88a抗氧化活性高于褪黑激素。随后,利用秀丽隐杆线虫模型评价褪黑激素衍生物88a对体内活性氧(ROS)水平的影响。结果显示,10μM 88a显著降低了野生型N2线虫的ROS水平。进而,建立了秀丽隐杆线虫PD模型,10μM 88a显著降低NL5901线虫的ROS水平,并且使α-syn的聚集降低了25.65%。用50 m M 6-OHDA处理BZ555线虫后,其多巴胺能神经元细胞荧光强度降低至(47.41±2.53),补充10μM 88a可使其荧光强度提高56.68%(74.28±1.87)。最后,对褪黑激素衍生物88a改善DA神经退行性病变引起的行为障碍进行评价,结果显示,与对照组(9.7%)相比,10μM 88a(69.9%)改善了线虫在食物中的感知行为,使其基础速率增加了60.2%。综上所述,褪黑激素衍生物88a通过降低氧化应激诱导的ROS水平,显著降低PD症中α-syn的聚集和多巴胺能神经元损伤,改善DA神经退行性病变引起的行为障碍,进一步研究该化合物的作用机制能够为帕金森病提供新的治疗思路和治疗策略。
其他文献
首先,我们从脉冲控制的观点出发,建立关于任意时滞的脉冲微分不等式.其次,利用此不等式与Lyapunov(李雅普诺夫)方法等研究了具有任意时滞的神经网络的脉冲μ-稳定化,以及驱动-响应系统的脉冲μ-同步化.最后,运用矩阵张量技巧和线性矩阵不等式等方法研究了具有任意时滞的复杂网络的脉冲μ-同步化问题.内容如下:第一章,介绍了研究脉冲时滞微分系统的稳定与同步目的与意义及国内外研究现状.第二章,从脉冲控制
学位
本硕士论文主要研究四元数双曲空间的若干性质.我们研究了球模型与Siegel域的极限球面之间的对应关系、两个偏差定理、球模型中极限球与正则域相交的充要条件等内容.本文结构如下:第1章,介绍四元数双曲空间的研究背景.第2章,通过四元数双曲空间的球模型,引入四元数双曲空间的另一模型Siegel域,得到了Siegel域上的Busemann函数与等距球的相关性质.接着在Siegel域上引入极限球坐标与Cyg
学位
众所周知,一个矩阵只有当它是方阵而且非奇异时才有逆矩阵,或者当它的列(或行)是线性无关时才有逆矩阵.而对于任意多个非奇异矩阵Ai,i=1,2,…,n,以下反序律成立:(A1A2…An)-1=An-1..…A2-1A1-1.这种反序律对于任意多个矩阵乘积的广义逆来说不一定成立.20世纪60年代以来,很多学者研究了矩阵乘积广义逆的反序律理论及其应用,其中包括了矩阵乘积Moore-Penrose逆以及D
学位
在近些年来的脑科学的研究当中,关于大脑疲劳形成在背后所蕴藏的神经科学机理,一直是当前的热点研究方向之一,由于驾驶疲劳所导致的交通事故伤亡,引起了人们对驾驶疲劳检测的高度重视,本文针对以往疲劳检测模型中的不足,提出了一种新的基于注意力的多尺度卷积神经网络,即动态图卷积网络(AMCNN-DGCN)模型,该模型能够很好的发挥图卷积对非结构化数据提取特征的能力,并结合动态调整的邻接矩阵,获得更加优异的分类
学位
随着图像处理技术的发展,舌诊客观化成为当今人工智能医工交叉领域的热点内容。为使中医舌诊更加客观定量化,图像处理技术与深度学习已应用于舌诊客观化。因此,基于深度学习的舌诊图像处理方法成为了必然的研究方向。目前,舌诊图像分割分类技术面临着复杂环境下的分割结果不佳,分类标记数据样本不足以及类别不平衡的问题。针对以上舌诊图像分割分类任务中面临的难点问题,本文以深度学习框架为基础,结合编解码网络、注意力机制
学位
金属制品在工业生产过程中,常常会由于各种因素受损,产生缺陷。过去,企业往往采用人工检测的方法进行筛选,该方法工作量大,检测速度慢,无法满足实际需求,而基于机器视觉的表面缺陷检测技术能够克服人工检测的缺点,已成为工业生产线中的关键检测技术。然而,传统机器视觉检测算法步骤繁琐,通用性差,且容易受到光照,阴影等环境条件的影响,其人工设计的特征更是存在着较大的局限性,难以应对复杂多样的金属表面缺陷。随着人
学位
人脸美丽预测是研究让计算机具有人脸美丽判断能力的前沿课题,可应用于医学整形美容、社交网络推荐、人脸图像美化、人物原型设计等多个领域。目前,人脸美丽预测仍存在监督信息不足、模型易受噪声标签影响等问题。噪声标签学习可通过建立噪声模型、设计损失函数或者正则化器等方法,来降低人脸美丽预测中噪声标签的影响;多任务学习能利用多个人脸美丽预测相关任务的有效监督信息,来提高人脸美丽预测的准确率。将噪声标签学习与多
学位
量子点发光二极管(Quantum Dot Light-Emitting Diodes,QLEDs)凭借其出色的发光效率、低制备成本和色彩饱和度高等独特优势,成为光电子领域的一个研究热点。然而,电荷传输层/发光层界面能级偏移导致QLEDs内存在载流子注入不平衡的问题,阻碍了其商业化进程。为了解决这一问题,首先,本论文设计了一种新型Cd掺Zn S(Cd Zn S)壳层量子点并将其应用到QLEDs当中。
学位
碳点是一类新型的碳基荧光纳米材料,由于其原料丰富、发射波长可调、毒性低、荧光稳定、结构易于修饰等优势使其在生物成像、发光二极管、光电转化、生物诊疗和催化降解等应用中呈现出了巨大的前景空间。自从碳点发展以来,吸引了大量的研究者们对其进行结构与性质的调控,旨在提高其荧光量子产率以及研究其特殊用途。其中过渡金属由于独特的性质能够影响基质的局部电子密度,并能够有效促进基质中的分子间电子转移,从而显著的提高
学位
磁浮交通是轨道交通领域里的明日之星,随着磁浮交通技术的不断发展,磁浮列车的行驶速度不断提高。气动阻力是制约磁浮列车提速的重要原因,对高速磁浮列车进行气动减阻研究成为当下重要的研究课题,为了进一步提升高速磁浮列车行驶速度和减小列车能耗,本文结合表面微结构前沿减阻技术,对时速400 km/h的高速磁浮列车进行气动减阻研究,主要完成以下工作:(1)首先采用基于SST k-ω湍流粘性模型的CFD数值计算方
学位