论文部分内容阅读
计算性能和多任务同时处理能力的不断提升是芯片发展的必然趋势。随着制造工艺的日渐成熟,芯片上器件已经在纳米层实现了集成,芯片上多核处理系统(Multiprocessor systems-on-chip,MPSoCs)目前也已经成为片上设计的主流,而基于电互连的片上网络(Electrical networks-on-chip,ENoCs)由于时延,带宽以及在功耗方面的缺点已经不能满足MPSoCs发展的需要。芯片上光互连网络(Optical networks-on-chip,ONoCs)的出现成为一种全新的、用光代替电连接的、可有效解决电互连所面临问题的芯片上多处理核间互连方式,并结合两者的特点,可运用电互连层实现仲裁控制而光互连层完成数据传输。但尽管光互连能弥补电互连的许多不足,芯片数据处理和传输量的持续上升导致了以单波长传输的光网络不再能满足人们对通信质量的要求。将波分复用(Wavelength division multiplexing,WDM)技术应用于ONoCs中能通过复用波长数量的增长使光链路成倍扩容,从而实现片上大容量大规模高速率的信息传输,有效解决了单波长ONoCs的劣势。基于WDM技术的ONoCs(WDM-based ONoCs)在大数据处理、高速通信网络等领域有巨大的应用前景,成为了研究领域的焦点,而硅基光器件结构的持续革新以及性能的不断完善更直接推进了 WDM-based ONoCs成为片上网络的主要设计模式。在绝缘衬底上的硅(Silicon on insulator,SOI)芯片上集成的表面激光器、光电调制器、光路由器、光电探测器等器件是WDM-based ONoCs的主要组成部分。但由于材料本身的物理特性,多路光信号在传输过程难免受到功率损耗与串扰噪声的影响,从而产生衰减和畸变,引起失真。相对单波长ONoCs而言,多波长并行传输的WDM-based ONoCs将会导致非线性四波混频效应(Four-wave mixing,FWM)的产生,因此累加在信号上的非线性串扰噪声将更为严重,同时也增大了目的节点上串扰噪声的量级,进一步导致了光信噪比(Optical signal-to-noise ratio,OSNR)的降低以及误码率(Bit error rate,BER)升高。WDM-based ONoCs的主要功能是高效高质量地完成多核之间信息传输与交换,而影响其网络性能的关键因素是损耗和串扰,同时也决定了系统的规模。因此,本文将以WDM-based Torus网络为例,提出损耗以及串扰计算的理论模型和网络性能的分析方法,主要工作如下:1.阐述了 WDM技术的相关理论,分析了 FWM的基本原理和FWM非线性串扰噪声在网络中的计算方法。2.基于SOI微环谐振器的物理结构及原理,提出了由不同谐振波长的微环和硅基波导构成的支持WDM的几种基本光交换器件(Basic optical switching elements,BOSEs)的模型。通过从不同状态下分析了 BOSEs各端口的出射光功率以及串扰噪声功率,为网络损耗串扰模型的建立奠基。3.依据BOSEs的分析基础,设计了适用于网络的五端口光路由器模型,提出了网络中采用的交换机制和路由准则。总结了路由器中不同端口对之间的损耗以及由于链路交叉而引入的串扰的计算公式并用具体实例说明。4.根据XY路由准则,建立了信号从源节点到目的节点链路中功率损耗、串扰噪声、光信噪比以及误码率的分析方法。给出了最差路径选择的理论推导过程。5.仿真中采用了基于WDM的优化Crossbar和Crux(WOPC,WCX)光路由器,并得出两种情况下最差路径的性能参数与最大网络规模。最后运用Optisystem和OPNET搭建了网络模型,更直观地分析了信号的传输质量、网络时延以及吞吐特性。仿真结果显示,WDM在网络中的应用使时延和吞吐性能得到了大幅改善,而网络扩展性、信号光信噪比和误码率与硅基光子器件的损耗特性和累积在信号上的串扰噪声功率密切相关,对于两者的有效控制是提高传输质量的关键。例如采用端口间损耗较小的WCX路由器,当光链路中激光器输出功率为1mW时,网络规模可以达到6×5并且在最差情况下目的节点接受到信号的平均光信噪比,信号功率和噪声功率分别是1.2dB,-32.6dBm和-33.8dBm。但是在同样情况下,当网络中采用WOPC路由器,这些参数的值为-6.9dB,-41.4dBm,-34.4dBm,信号功率下降串扰功率上升,导致链路光信噪比降低而影响网络性能。