生理状态智能评估方法研究与实现

来源 :西安工业大学 | 被引量 : 0次 | 上传用户:guocanon
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
人工智能的迅速崛起开启了一次重大的时代转型,生理状态评估领域迎来了新的曙光,以数据和智能状态评估算法驱动的生理状态评估领域方兴未艾。在生理状态评估领域之中,传统的心率异常状态存在误报警、准确率不高等问题,同时疲劳状态也难以通过单一参数进行感知与评估。因此本文针对两类不同的生理数据(波形生理信号以及稀疏多元生理数据),分别建立了深度神经网络模型,实现了人体心电异常状态以及疲劳状态的识别。本文主要的研究内容如下:(1)心电异常状态判别模型研究为了解决运动过程中心率异常疾病困扰的问题,本文实现了运动状态下心电异常状态的判别。基于MIT-BIH数据库中的心电数据,本文首先使用小波变换算法对心电信号进行了去噪处理,其次基于数据集当中专家标注的R峰位置进行了样本提取,最后构建了CNN+LSTM模型实现了五种心电信号异常状态的识别。通过对比实验结果表明,新的模型对于心电信号5折平均准确率为99.4%,与基准CNN模型相比提高了1.13%。新的模型对于异常心拍的识别能力较CNN模型有明显提升,其中“室性早搏(V)”、“左束支传导阻滞心搏(R)”以及“右束支传导阻滞心搏(R)”三类提升的识别数量分别为27、42和4个。(2)疲劳状态评估模型研究针对士兵在运动过程中疲劳状态难以及时感知的问题,本文选取了年龄在25-35岁身体素质较好且身体健康的男性受试者的数据模拟士兵数据,建立了士兵疲劳状态评估模型,实现了疲劳状态的综合评估。首先进行了生理数据采集试验并进行了生理状态标注,其次基于采集的心电信号进行了心率变异性分析获取了多种心率变异性指标,此类指标与生理数据采集实验获取的相关指标共同构建了疲劳状态综合评估指标体系。最后基于循环神经网络建立了深度神经网络模型实现了人体疲劳状态的识别,模型总正确率达到了93.00%。(3)生理状态评估系统设计本文基于C#和visual studio 2019软件平台,设计开发了具有生理状态评估和生理数据动态显示功能的生理状态评估系统。首先基于GATT技术搭建了蓝牙客户端实现了生理数据的获取、解析、存储。其次基于ML.NET框架调用了状态评估算法实现了生理状态的评估。此外基于winform以及SUNNYUI框架搭建了用户界面,增强了系统与用户之间的交互性。
其他文献
学位
图像超分辨率重建技术是指在同一场景下,从低分辨率模糊图像到高分辨率图像转换的一种特殊方法。近年来,由于其具有广泛的实际应用价值和深远的理论意义,这种技术已经被广泛地应用于计算机视觉、图像处理等领域。由于将生成对抗网络用于图像超分辨率重建可以获得更高的质量和更好的视觉体验,所以与生成对抗网络有关的研究受到了极大的重视,但是该网络在模型重建中存在尺度单一和获取高频信息不充分的弊端,导致生成的图像有强烈
学位
随着互联网的快速发展,移动应用数量激增,同时移动应用产品功能趋于多样化与复杂化,由此引发的GUI测试问题也越来越具有挑战性。现有的移动应用GUI测试方法中,传统的手工测试存在高成本、低效率、强依赖等问题。而主流的自动化测试方法,money随机测试难以复现bug,录制回放技术需要大量人工操作。因此,如何实现快速高效的移动应用GUI自动化测试成为当前移动应用测试的研究热点。GUI测试建模是实现GUI自
学位
知识是对“识”的理解和描述,也可以说知识就是智能。但目前的主流认知是知识是人类在实践中认识客观世界的结果,这种认识并没有对认识的主体进行讨论。在人工智能领域,为了建立一个基于共识的知识库来表现智能,出现了专家系统、神经网络、知识图谱等模型,这些模型对知识的研究不够深入,且知识库不会随外界更新。因此为了建立一个全面、基于自我意识、可以随外界更新的知识库,本文在知识表示研究的基础上,将知识融合任务分成
学位
现代战争中,无人机在空战和空地联合作战中都占据重要地位并发挥着巨大作用。然而,从战术任务起飞点出发,躲避所有障碍物并且避免敌方探测器的嗅探和攻击,安全飞行并最终到达任务终点,是无人机在诸多战术应用中的首要任务,是执行一系列任务的前提和保障。因此,无人机需要一条满足任务需求的飞行路径,需要有效的路径规划方法来获得。除此之外,无人机战术路径规划的常规仿真方案中,无论是环境感知、态势评估、飞行控制、无人
学位
相机在拍摄人脸图时,常常因为抖动、失焦等原因得到模糊图像。而当人脸图像被模糊化时,对人脸识别等高级视觉任务有很大的影响。人脸图像去模糊的目的是从模糊的输入图像中恢复出清晰的图像,从而提高识别精度等。因此,图像去模糊问题是图像复原领域里面的研究重点,而一般的去模糊方法在人脸图像上效果不佳。本文采用生成式学习方法,结合特征矫正模块,实现对模糊人脸图像进行高精度复原,主要工作如下:(1)基于高效自注意力
学位
随着深度学习中卷积神经网络技术发展,现今的卷积神经网络的模型结构应用越加广泛。为了提升模型性能,网络模型通常变得更加复杂,规模日益庞大,且神经网络本身存在计算冗余,使得边缘设备无法满足复杂模型的运算需求。因此深度卷积神经网络的模型压缩工作被广泛研究,使用有效的模型压缩算法可以减少冗余度,让复杂模型转变为轻量模型以适应更丰富的应用场景。本文主要工作研究了轻量化卷积神经网络和结构化模型剪枝技术。首先是
学位
随着计算机图形学、数字图像三维处理在口腔数字化方面的快速发展,计算机在口腔诊疗领域有着广泛的应用。本课题着眼于数字化口腔医疗的发展和推广,在牙齿尖点的提取和牙齿的三维测量基础上,进行了全牙列数字化评估研究。本文包括以下几个方面的主要研究内容:1)本文以全牙列数字化评估系统在口腔数字化诊疗中的应用为背景,对三维测量技术、牙尖提取方法和现有的评估系统进行了简单的介绍。在此基础上,基于编码结构光技术的相
学位
随着计算预算和数据可用性的空前增加,深度模型在目标识别任务中取得了优异的性能。然而,机器学习机制仍然无法与认知学习相比,认知学习不仅可以持续地获取新知识并保存大部分经常用到的旧知识,还能在少量注释样本上构建高精度的识别能力。小样本类增量学习(FSCIL)是一种受认知学习启发的新兴机器学习范式,给定具有足够训练数据的基类和来自新类的少量可训练样本,FSCIL使用旧类训练一个表示模型,然后不断地使模型
学位
近年来,随着卫星遥感技术和深度学习技术的快速发展,基于深度学习方法对遥感图像中的特定目标进行检测逐步成为当前的研究热点。我国拥有广袤的海域和许多重要的港口,开展海面目标检测无论在军事上还是在民用上都有着非常重要的价值和意义,例如渔业管理、港口交通服务、海上巡逻等。本文主要目标是在复杂海洋环境以及各种云雾天气的干扰情况下,依托现有的深度神经网络方法,研究海面遥感舰船图像处理的分类与定位不准确问题。主
学位