论文部分内容阅读
在人体的大脑组织中,脑白质占据较大的区域,同时,在人体的思维等功能也占据重要的作用。鉴于大脑核磁共振脑组织图像可以较好的检测出脑白质病变,鉴别早期或轻微脑白质病与精神疾病。本文针对大脑核磁共振图像,使用人工智能中的模式识别技术,自动地将大脑核磁共振脑组织图像中的脑白质区域分割出来。鉴于计算机网络中的图像数据存储及远程医疗的实现,本文还利用图像数据压缩技术及计算机网络技术,对分割后的图像进行压缩,使用计算机的网络平台,将检查结果等放到网络平台数据库中,方便病人和医生对检查结果进行查看研究。在大脑核磁共振脑组织图像的自动分割方面,基于灰度共生矩阵和灰度特征值,本文提出了一种针对SVM技术的医学图像快速分割方法。在特征值提取的方面,降低了特征值维数,并提高了运算速度和分类正确率。另一方面,在一张图像样本的基础上,通过选取其轮廓等作为特征值,并利用间隔采样的方法对SVM进行训练,可以实现对多幅同类图像的分割,在减少样本数量的同时,避免了因样本过多而造成的运算效率低下的问题。仿真实验表明,通过对某一层像素点的主要特征值作为训练样本,对本层的分辨率可达到90%左右,其他相似层的分类正确率可达到80%以上,并且能够有效的还原出病变区域,大大提高了运算效率。同时,在图像数据存储方面,使用基于小波变换的压缩感知方法将分割后的图像背景区域进行压缩,可在PSNR=20.49的条件下,将背景图像数据压缩为原图像的1/4,获得了较高的压缩比。同时结合huffman编码对分割后的脑白质区域进行无损压缩,压缩比可达到60%左右,很好的保留了脑白质区域。在java web网络平台上,本文从远程医疗方面出发,设计并开发了一套针对病人检测的监控平台。该平台的设计从两个方面进行,分别实现了调用图像处理模块和结果信息查看模块。在调用图像处理模块中,利用python语言自动定时运行matlab进行图像分割及图像压缩运算,同时连接mysql数据库,部署图片到mysql数据库中。结果信息查看模块,使用MVC设计模式,jsp建立视图模块,java servlet建立控制模块,JavaBean建立模型模块。结果信息查看模块,通过将图片变成二进制数据流,传输到前台jsp页面中。通过信息查看模块,病人和医生可以查看病人的一系列大脑核磁共振检测结果,实现了远程医疗的应用层。这个管理系统的数据库是mysq1,实现语言是java, python,浏览器页面语言是jsp和Dojo。该平台完成后,可以在大脑核磁共振的仪器中装入相应的软件和脚本,对病人检测后,远程的医生可以通过浏览器连接web,自动查看到病人的检测信息,并查看到病人相应的过往记录,方便对病情的研究,同时病人也可以查看自己的检测结果。