论文部分内容阅读
核技术、原子反应堆和放射性同位素技术近年来得到了广泛的发展和应用,在带来巨大经济效益的同时,也产生了大量的放射性废物,这些废物大部分被排入海洋。2011年3月日本地震导致福岛第一核电站发生严重的核泄漏事故,日本后将原子反应堆中的低放射性裂变产物投放于海洋中,这使得其周边海域的放射性急剧增加。放射性核素在海洋生物体内吸收、富集,势必对水产品质量安全造成影响。我国是水产品生产和消费大国,水产品质量安全直接关系到消费者的身体健康,在影响水产品质量安全的一系列因素中,核污染不容忽视。本文分析了国内外放射性核素的检测方法,认为主要有物理法和放射化学分析法,对两种方法的检测原理、前处理过程、灵敏度和安全性进行了对比总结,这对建立快速、简单的方法检测不同样品中的放射性核素具有重要意义;运用高纯锗γ谱仪建立了物理检测水产品中核污染的方法,对关键检测条件进行了优化;运用建立的方法对我国2011年11月—2012年12月进出口水产品进行了监测。具体内容如下:1.根据裂变产物的特性,将水产品核污染检测方法分为放射化学分析法和物理检测法两种。物理检测法是通过检测放射性核素发射的射线,对核素进行定性和尽量分析;放射化学分析法是利用放射性核素的化学特性将其富集分离提纯后,进行检测。放射性核素的分离方法主要有沉淀法、离子交换法和溶剂萃取法三种。比较认为:物理法的前处理过程简单,操作简便,安全性高,成本较高;化学法检测限高,操作复杂,化学试剂易对操作人员造成伤害,产生放射性废液不易处理。2.高纯锗(High Purity Germanium,简称HPGe)γ谱仪是利用高纯锗探测器对γ射线进行探测,从而确定放射性核素种类和比活度值的仪器。其对样品的前处理要求简单,可直接对样品进行测量。利用高纯锗γ谱仪建立了水产品核污染的检测方法,具体操作为:样品经洗净、晾干、取可食部分、烘干和粉碎5个前处理过程后,进行装样。烘干温度和时间根据样品种类而异。装样前后称重以计算样品质量,样品盒保持整洁和密封,放入高纯锗γ谱仪中进行测量,测量时间为6-8h,及时保存图谱。用实验室无源效率刻度(Laboratory Sourceless CalibrationSoftware,简称LabSOCS)对仪器进行刻度,用Genie-2000软件对图谱进行分析,得出检测样品中的放射性核素种类及比活度值。3.由于高纯锗γ谱仪主要是通过探测器对样品发射的γ进行测量从而对放射性核素进行定性和定量研究,样品厚度会对探测效率产生影响,因此研究适合的样品高度具有重要意义,实验表明:75mm是最佳样品高度,此时对应的水产品质量应为300±20g;高纯锗γ谱仪价格昂贵,使用过程中应综合考虑仪器测量需求和经济效益,选择合理的检测时间对提高仪器的使用效率具有重要意义,实验表明:6-8h是最佳检测时间。4.利用建立的方法对2011年11月—2012年12月我国进出口水产品的核污染状况进行了监测,结果显示:在1084例样品中,阳性样品的检出率为13.4%,放射性核素为134Cs、137Cs和110mAg,检出率分别为6.92%、9.04%和4.34%,需要说明的是:在134Cs的阳性样品中都检出137Cs,但137Cs和110mAg的阳性样品几乎完全独立,只有1例鳕鱼样品同时检测到两种核素。放射性核素的比活度值集中分布于1.0-9.9Bq/Kg,分别占阳性样品的83%、91%和81%,但110mAg的比活度值较其他二者偏高,其中放射性比活度值>10Bq/Kg多达13%,三种核素最高检出比活度值分别为9.9、16.1和17.2Bq/Kg,均低于各国的限量标准。从时间分布来看,检出率较高的月份为2012年3—5月、7月,此时恰逢日本地震后一年左右,推断原因为放射性核素在海洋生物体内达到动态平衡,但仍需进一步探索。从水产品种类看,134Cs和137Cs的阳性样品为鲐鲅鱼、鳕鱼和鲥鱼,比例为78%。110mAg大多为鱿鱼,占阳性样品的94%。