【摘 要】
:
社会经济的快速发展和城市化进程加快带来了环境污染、资源短缺、温室效应等严峻问题,人们逐渐认识到发展可持续清洁能源的重要性。碱性阴离子交换膜燃料电池(AEMFC)具有环保高效、O2还原反应速度快、可使用非贵金属催化剂、成本低等优点,受到广泛关注。然而,作为AEMFC“心脏”部件的阴离子交换膜(AEM)仍然存在离子电导率低、化学稳定性差等明显缺陷,阻碍了AEMFC的商业化应用。本文从分子结构设计出发,
【基金项目】
:
国家自然科学基金项目(项目编号:21875176);
论文部分内容阅读
社会经济的快速发展和城市化进程加快带来了环境污染、资源短缺、温室效应等严峻问题,人们逐渐认识到发展可持续清洁能源的重要性。碱性阴离子交换膜燃料电池(AEMFC)具有环保高效、O2还原反应速度快、可使用非贵金属催化剂、成本低等优点,受到广泛关注。然而,作为AEMFC“心脏”部件的阴离子交换膜(AEM)仍然存在离子电导率低、化学稳定性差等明显缺陷,阻碍了AEMFC的商业化应用。本文从分子结构设计出发,将亲水性的给电子醚基团和耐碱性能优异的哌啶季铵盐功能基团引入聚苯醚(PPO)骨架,制备了两种不同结构类型的侧链含醚键哌啶型聚苯醚阴离子交换膜,主要的内容如下:(1)通过门舒特金反应将哌啶基团接枝于聚苯醚主链,随后通过环氧开环反应和硅氧烷水解缩合引入硅氧硅交联网络,以改善羟基过度亲水引起的尺寸稳定性差的问题,制备了硅氧烷交联型氮位键接哌啶阴离子交换膜(PPO-Pip-OH-X)。~1H NMR、FT-IR及TGA分析证明醚基团、哌啶基团和硅氧硅交联网络成功引入聚合物骨架中。随着硅氧烷组分的增多,PPO-Pip-OH-X膜的力学强度和尺寸稳定性明显提升。然而,无机组分的引入会导致膜的离子交换容量(IEC)降低,从而影响膜的导电性能,因此需要对无机组分的占比加以调控。TGA分析可知,PPO-Pip-OH-X膜具有优异的热稳定性。碱稳定性分析表明,含给电子醚基团的PPO-Pip-OH-X膜在80℃、1 mol L-1KOH溶液中碱处理480 h后离子电导率损失为17.08%-20.35%,优于传统的苄基哌啶型PPO-Pip膜(26.83%降解),但仍有待提升。(2)为进一步改善哌啶型聚苯醚阴离子交换膜的耐碱性能,采用威廉姆森醚化反应将哌啶功能基团通过柔性含醚间隔链接枝于聚苯醚主链上,制备了非氮位键接哌啶聚苯醚阴离子交换膜(PPO-OPip-X)。~1H NMR和FT-IR分析证明了PPO-OPip-X聚合物的成功合成。研究显示,PPO-OPip-X膜展现出了优良的力学性能、尺寸稳定性和热稳定性,可满足基本性能需求。在相似的IEC条件下,PPO-OPip-34膜在80℃的离子电导率为63.48 m S cm-1,比传统的苄基哌啶型PPO-Pip-34膜高出12.8%,这归因于PPO-OPip-34膜良好且均匀的微观相分离形态。此外,PPO-OPip-X膜展现出优异的碱稳定性,其在80℃、1 mol L-1KOH溶液中碱处理480 h后的离子电导率损失均低于10%,并且几乎无质量损失。
其他文献
过量消耗的化石能源造成的环境恶化和资源枯竭等问题严重影响着人类赖以生存的环境。氢气作为一种热值高、原料来源广和燃烧清洁的能源载体一直备受瞩目。相较于化石能源制氢,电解水制氢得到的氢气品质更高而且能摆脱对化石能源的依赖。电解水制氢包括两个电化学反应,分别是涉及二电子转移的析氢反应(HER)和四电子转移的析氧反应(OER)。涉及电子转移数越多意味着反应需要在更大的过电位下进行,也意味着OER比HER的
超分子凝胶因其独特的性质而受到人们的广泛关注。用小分子自组装构筑超分子凝胶可通过改变凝胶因子的浓度、各个组分的比例、凝胶形成的环境等因素灵活的对其结构与性能进行调控。研究超分子凝胶的微观结构与性能之间的关系以及其对外界环境(光照、p H、温度等)的响应性,有助于拓展超分子凝胶材料在智能材料、生物和环保材料等领域的应用。本文直接选用结构简单的有机小分子异烟碱(I)、没食子酸(G)、均苯四甲酸(P)、
随着化石能源的枯竭和环境污染问题的日益加重,对清洁可再生能源的开发以及能源的存储和利用提出了更高的要求。超级电容器,是能够储存和容纳一定能量的电子器件,充放电速度快,循环稳定性好,且对环境友好。纤维素作为一种天然高分子,来源广泛、成本低,通过2,2,6,6-四甲基哌啶-1-氧基(TEMPO)氧化法制备纳米纤维素进行碳化可以获得具有三维网状结构的碳气凝胶。但由于其比电容较低,限制了其进一步应用,因此
锂离子电池具有容量高、体积小、环境友好等优点,是应用最广泛的储能器件之一。随着便携式电子设备的高速发展,锂离子电池也向着轻量化、灵活化发展。集流体是锂离子电池中与活性物质直接接触的部件,起着联通内部化学反应和外部电路的重要作用,对锂离子电池的倍率性能、功率密度和循环稳定性都有很大的影响。石墨烯材料具有高导电性、高化学稳定性和较小密度,是一种很有前途的集流体材料。然而,如何制备适用于集流体的高导电、
随着科技的不断进步,未来燃气轮机将承受更加极端的高温工作环境。采用耐高温性能更好、质量更轻、比强度更高的碳化硅复合材料(Si C、Cf/Si C、Si Cf/Si C)是解决目前传统高温合金材料温度应用限制的一个重要突破点。针对碳化硅复合材料在高温下易与燃料燃烧产生的水蒸气发生化学反应而损伤基体性能的问题,本论文探索了适用于碳化硅表面的热/环境障陶瓷涂层(T/EBCs),通过掺入负热膨胀材料的方法
混凝土具有原料来源丰富、强度高、成型方便、耐久性好等优点而得到极为广泛的应用。然而,混凝土在服役期间易因应力作用而出现损伤和开裂,导致其力学性能和抗渗性降低,严重降低其使用寿命。离子络合剂可促进混凝土中的钙离子与硅酸根、碳酸根反应,形成硅酸钙和碳酸钙,从而赋予混凝土损伤和裂缝自修复能力。为进一步提高混凝土的自修复能力,本文将离子络合剂分别与含硅酸根、碳酸根的无机化合物复合后用于混凝土,以延长混凝土
高性能聚合物基介电材料因质轻、柔韧性好、击穿场强高、成本低等优点在储能领域一直受到极大关注。然而,其中的聚合物基体大部分来源于传统的化石能源衍生物,不可再生,不可生物降解,而且非碳中性,这不利于环保和社会的可持续发展。因此,在资源短缺和环境污染的现状下,开发新型可生物降解、可再生的生物质基复合介电材料具有重要的发展意义。甲壳素在地球上的储量仅次于纤维素,其在多个领域都有巨大的应用潜能,而在介电储能
随着工业发展和社会进步,日益严重的能源短缺问题已经成为亟待解决的重大问题。能源发展的核心是催化技术,而催化技术的核心是催化剂,因此开发高效新型催化剂材料是实现能源可持续发展的关键。负载型贵金属催化剂是催化剂材料的重要一员,其中Pd基催化剂因其高催化性能和高化学稳定性等优点,已经成为应用最为广泛的负载型贵金属催化剂。载体材料直接决定了催化剂的催化性能。多孔载体材料是使用最为广泛的一类载体,但工业上常
随着我国工业化的发展,雨水中含有的污染物质数量渐增,如果这些雨水直接渗入到地下,势必会对地下水资源造成严重污染。而透水混凝土作为“海绵城市”建设的关键材料,因其具有特殊的连通孔结构和巨大的比表面积,存在净化雨水的潜质。但透水混凝土存在净水、透水与力学性能难以协调的问题,限制了净水功能型透水混凝土的设计与应用。基于此,论文构建了净水功能型透水混凝土结构模型,并分析出影响透水混凝土力学性能、透水性能和
清洁氢能源的广泛使用产生了巨大的氢气需求,在众多制氢方法中电催化制氢由于其原料存量丰富,制氢过程无污染等优点得到了广泛研究。然而铂等高催化活性贵金属因其高成本,低储量限制了其大规模的应用。因此要利用有效的手段进行改性提升非贵金属催化剂的活性,现有的改性催化剂的手段主要有:通过不同催化剂材料间的复合协同提升催化剂的析氢性能;控制催化剂的形貌暴露活性位点。但以上方法都没有改善催化剂的本征活性,而缺陷工