论文部分内容阅读
随着列车运行速度不断提高,轮轨激扰振动和空气制动热载荷更加剧烈,轮对上各零部件承受着复杂的载荷。制动盘螺栓作为制动系统的关键零部件,在列车运行中不能出现任何松动甚至断裂等异常事故,其可靠性决定了高速列车的最高运行速度和运行安全。当前国内高速动车组在某些恶劣运行工况下,部分制动盘螺栓的使用寿命未能满足预期设计要求。本文以高速动车组轮装制动盘螺栓为研究对象,利用理论研究、有限元分析和线路试验等方法,对轮轨激扰和制动双重作用下的制动盘螺栓可靠性开展深入研究,获得制动盘螺栓载荷变化规律和疲劳损伤,为制动盘螺栓合理设计和保障列车运行安全提供理论指导。论文主要研究内容和结论如下:(1)建立轮装制动盘结构各零部件的几何模型,结合几何尺寸和工作环境,提出一种螺栓连接的理论模型。基于该理论模型和相关力学知识,获得载荷解析求解公式,并通过理论推导得到不同运行速度下的螺栓载荷分布规律,获得螺栓拉伸载荷和弯曲载荷特性。在车轮加速旋转过程中,螺栓承受的拉伸载荷逐渐减小,螺栓杆上左右两端产生弯矩的最大值,方向相同。中间截面出现的弯矩极值,与左右两端截面的弯矩方向相反。在结构尺寸和材料属性确定时,制动盘螺栓的径向弯矩变化量与列车运行速度呈二次方关系。(2)建立考虑结构弹性和旋转走行的轮装制动盘螺栓连接结构的有限元分析模型,研究了轮轨接触状态下车轮高速旋转过程中螺栓受载情况,获得了作用在螺栓上的拉伸载荷、径向弯矩和周向弯矩,揭示了车轮高速旋转过程中制动盘螺栓载荷的分布和变化规律。车轮高速旋转时,螺栓杆的内外侧应力存在差异。螺栓杆中间部位的外侧应力变大,内侧应力变小,表现为向外弯曲。螺栓杆左右两端截面外侧应力变小,内侧应力变大,表现为向内弯曲。车轮加速旋转时,螺栓承受的拉伸载荷逐渐减小。同时,螺栓杆上出现随旋转角速度增大而增大的径向弯矩变化量,且左侧截面弯矩变化量大于右侧截面弯矩变化量,这是由于车轮的不对称性以及轮轨力作用,导致车轮辐板发生一定程度的弯曲变形引起。在车轮转动过程中,车轮每转动一周,受轮轨力挤压变形影响,螺栓上的载荷便出现一次波峰。随着车辆运行速度增大,螺栓载荷出现周期性波峰的速度也越来越快。车轮上施加振动加速度激励后,螺栓上产生高频率小幅值载荷,这是由轮轨激扰的高频振动所致。(3)基于螺栓载荷测试技术,完成线路试验并获得了不同运行工况下制动盘螺栓的应力/载荷动态响应,得到螺栓载荷值和变化特点。列车运行过程中,制动盘螺栓的载荷变化与列车运行速度紧密相关。动车组加速过程中,螺栓轴向拉伸载荷和径向弯矩减小。动车组减速过程中,拉伸载荷和径向弯矩增大。提取一定时间内的载荷信号,获得了螺栓载荷与车轮转速相关的周期性变化规律。镟轮前车轮多边形严重,高速运行下轴箱的垂向振动加速度变化剧烈,最大值达到803.2m/s~2,螺栓应力变化也随之加剧。镟轮后消除了车轮多边形影响,轴箱振动加速度普遍较小,螺栓应力变化也小于镟轮前的应力结果。在两次临时短暂空气制动,螺栓载荷均发生了较大变化,主要原因是闸瓦和制动盘摩擦产生了巨大的热载荷,制动盘温度升高发生膨胀导致螺栓上出现了较大的载荷变化。(4)结合有限元仿真不同截面的载荷比例系数和线路实测数据的分解载荷信号,获得制动盘螺栓危险截面的载荷时间历程,分析了多种工况下螺栓的疲劳损伤规律。根据材料力学相关知识,计算了螺栓承受的拉伸载荷、径向弯矩和周向弯矩产生的正应力并合成了危险截面的总应力时间历程。采用雨流计数法,编制了螺栓128级应力谱,计算各类工况和载荷产生的损伤,对制动盘螺栓进行疲劳损伤评估。镟轮前车轮多边形严重,合成的总应力产生的损伤最大,最大值为32.5。列车高速运行时,镟轮前受车轮多边形的影响,轮对产生了非常大的振动加速度,标准差是镟轮后的7.68倍,镟轮前螺栓的总应力损伤是镟轮后的80.8倍,表明车轮多边形引起的振动是螺栓损伤的主要原因。在空气制动过程中,制动盘螺栓的拉伸载荷、径向弯矩和周向弯矩均出现了较大变化,该工况螺栓损伤远大于正常工况损伤。因此,在列车运营过程中,尤其是在速度较高时,应尽量避免出现车轮多边形和高速空气制动等不利工况。(5)研究了不同摩擦系数、车轮直径、轮轨横移量、振动加速度和制动热载荷等对制动盘螺栓载荷的影响。随着列车运行速度增大,当摩擦系数减小时,零部件之间更容易发生相对滑动位移,影响作用在螺栓上的载荷。车轮直径影响车轮旋转角速度和车轮的不对称程度。当车轮直径减小时,螺栓载荷变化量逐渐增大,车轮不对称性效果增强。轮轨横移量决定了轮轨力的大小和作用位置,影响车轮辐板的弯曲程度和方向。当车轮向内侧横移时,螺栓的拉伸载荷减小量和径向弯矩滚动波形明显增大,且左侧截面径向弯矩小于右侧截面。在引入振动加速度后,制动盘螺栓载荷变化量随振动加速度的增大而增大,表明过大的振动加速度将减小螺栓的使用寿命,使其发生疲劳失效。在轮装制动盘螺栓连接结构的热分析模型中,分别进行了多个初速度级的紧急制动仿真。随着紧急制动初速度增大,导致制动盘和螺栓的温度升高,螺栓三种载荷均显著增大,减少了螺栓的使用寿命。在列车运行过程中,应当尽量避免该类非正常工况的发生。