【摘 要】
:
深度神经网络在图像分类任务中取得了不俗的表现,在生产生活场景中有着普遍应用。然而,对抗学习的出现对深度学习模型应用的鲁棒性提出了挑战。对抗学习包括对抗攻击和对抗防御,对抗攻击旨在挖掘人与机器学习模型认知事物的差异,对于图像分类任务来说,即是探索分类模型的决策边界。对抗攻击算法利用这种差异基于干净样本添加对抗扰动构建对抗样本,能够诱导机器学习模型预测错误的结果。由于对抗扰动很微小,人类无法察觉对抗样
论文部分内容阅读
深度神经网络在图像分类任务中取得了不俗的表现,在生产生活场景中有着普遍应用。然而,对抗学习的出现对深度学习模型应用的鲁棒性提出了挑战。对抗学习包括对抗攻击和对抗防御,对抗攻击旨在挖掘人与机器学习模型认知事物的差异,对于图像分类任务来说,即是探索分类模型的决策边界。对抗攻击算法利用这种差异基于干净样本添加对抗扰动构建对抗样本,能够诱导机器学习模型预测错误的结果。由于对抗扰动很微小,人类无法察觉对抗样本相比于干净样本的变化。由此则得到了人类和机器学习模型输出结果不同的一类样本。对抗防御则是提出对抗样本防御和检测手段,来训练能够抵御对抗攻击的模型。对抗攻击技术的发展展示了深度学习模型的缺陷,对于深度学习应用的安全性有很大的考验。深度学习模型在应用时,需要面对包含各种各样噪声的数据,倘若模型能够应对施加了对抗攻击精心构造的噪声的对抗样本,那么其在真实世界应用的稳定性将会有很大的保障。对抗攻击技术有助于深度学习的可解释性理论的发展,人和深度模型对于对抗样本预测结果的差异能够一定程度解释深度模型预测的原理。当前的对抗攻击技术发展也面临着瓶颈,其中一个重要因素即是出于对人类视觉不可查觉的要求,对抗扰动尺度往往被限制在很低的量级。微小的扰动可能会被样本添加的天然噪声破坏,这毫无疑问会限制对抗攻击的效果,但简单地提高扰动量级会使得对抗样本能够被轻易识别。本文针对对抗扰动尺度限制的约束,提出了一种基于解耦自编码器的无限制对抗攻击算法。该算法基于自编码器结构,具有解耦表示学习能力,能够将样本压缩并解耦为两个相互独立的因子,将任务语义和其他语义压缩至不同的因子。通过对任务语义无关因子的扰动来生成对抗样本,就能够使得对抗样本不需要严格约束在干净样本的某个邻域内,且他们的任务语义信息一致,实现了一种无限制对抗攻击。本文基于MNIST数据集提出两个变体版本:MNIST-彩色和MNIST-扭曲,充分测试所提算法,结果验证了所提算法实现了无限制对抗攻击,同时验证了其优秀的解耦表示学习能力。
其他文献
随着移动互联网的快速发展,伴随着的是用户需求的快速增长,为解决用户海量的需求,开发者需要开发出大量的应用。理解已有程序代码是许多软件开发任务的基本步骤,如何才能快速地分析出代码所实现的功能,并尽可能地压缩程序开发和维护流程,已经成为软件工程领域的热点问题,具有十分重要的现实意义和经济意义。传统的程序分类任务只能依赖大量的人力进行人工标注,效率低下。有学者从自然语言处理领域借鉴经验,将深度学习引入到
随着汽车产业和经济的发展,机动车保有数逐年增长,交通安全更是成为制约汽车产业进一步发展的桎梏。主动避撞系统作为一种能提升行驶安全性的主动安全技术越发受到人们的关注。主动避撞系统包含了纵向主动避撞和横向主动避撞,虽然前者的技术更为成熟且在市场得到广泛推广,但当主车车速较高或前车与主车的相对距离难以满足纵向主动避撞的需求时,横向主动避撞却能实现更有效的避撞。故针对汽车纵横向主动避撞控制策略的研究对车辆
认知障碍是指人体认知功能的损害,根据功能损害的程度不同,可诊断为轻度认知障碍(Mild Cognitive Impairment,MCI)或重度痴呆(Dementia)。由于身体机能及大脑神经的衰退,认知障碍普遍存在于老年人。据科学统计,认知障碍难以治愈,每年影响约1000万人,因此有效、准确的诊断引起了广泛关注。近年来,结合先进设备的3D影像结果和临床认知障碍测试量表结果,医生可以分析得到准确的
随着神经网络的广泛应用,其缺点愈发被发现。由于会产生“灾难性遗忘问题”而无法进行增量学习。近些年来,迁移学习的相关领域发展迅速。迁移学习方法大都注重模型在新任务上的效果,而在过去任务上的效果往往不注重。作为一种特殊的迁移学习方法,增量学习主要任务就是解决“灾难性遗忘问题”。本文将从另一个角度对灾难性遗忘进行解释:神经网络的训练对其数据的分布有很高的要求,如果训练数据不符合目标结果的分布情况,网络将
粒子群算法是由J.Kenned和R.C.Eberhart于1995年提出的一种优化算法,它通过模拟动物种群的行为而设计,其目的是获得最优解。这些群体内部各成员之间通过互相协作的方式去寻找食物,并且群体中的每个成员在搜索过程中都积累一定的经验,粒子群算法就是根据这些个体自身的经验和学习其他成员的经验,来不断的改进搜索方向和搜索进度。粒子群算法具有良好的优化性能,使用简单且应用广泛。美中不足的是,粒子
随着互联网技术的不断发展以及人们生活需求的不断增长,智能网联汽车的概念应运而生。与传统汽车相比,智能网联车的功能更加丰富,需要处理的网络数据量的规模也更加庞大。而传统的车载网络的带宽有限,无法处理大量的网络数据。与传统的车载网络相比,车载以太网具备高带宽、高吞吐量、低成本等优势。目前,许多汽车制造商已逐步应用车载以太网来满足高级驾驶辅助系统应用的运行需求。因此,车载以太网在汽车上的应用前景十分广阔
随着改革开放的脚步不断向前大步迈进深化发展,我国经济发展势头日新月异、迅猛提升,经济的发展紧密了世界各国间的联系,中国逐渐从一个发展中国家向发达国家迈进,物质的供给与物质的储备得到了极大提升,与此同时精神需求日益上涨,文化领域得到了空前的发展,其中电影领域的发展尤为瞩目。中国电影从以往为艺术类电影创作模式转向市场经济化运作模式,发展势头强劲,电影市场的蓬勃发展一方面得益于国家相关部门大力扶持,另一
由于二十一世纪网络的发展与信息量的剧增,各类数据间的关系变得越来越复杂,人们也不得不与大量的数据打交道。因此,当前的世界已经进入了大数据时代。为了能够在杂乱无章的数据海洋中高效的检索和整理出人们所需要的信息,就要对大量的数据进行批量分析和聚类,然后实现对这些不同类型数据的量化处理,并使用某种固定规格的数组或者向量来表示它们,这种表示将会满足后期应用中对数据的统计,检索,推荐以及分类等需求。对这些数
近年来,人们越发看重节能环保,而且随着我国居民汽车保有量的不断提升,国家也出台了一系列政策来对汽车能耗与排放提出了更高的要求。轻量化设计能够有效地实现满足汽车性能要求的同时减少能耗与排放,在实现汽车轻量化的途径中,材料替换是十分有效的方式。钢板弹簧的重量占商用汽车非簧载质量的10%-20%,使用复合材料来将其全部或部分进行替换,一般能够实现至少50%的减重,同时可以进一步改善汽车的行驶性能、减少燃
深度学习在语言翻译,图片识别等领域大力发展,已经在生活中获得大量应用,如机器翻译、人脸识别等。随着5G时代的到来,网速对人的限制越来越小,以及人们产生和发布视频资源的便捷性,都促使视频资源在网络中海量增长。如何利用深度学习算法学习视频信息表达方式和进行网络短视频多模态搜索一直是业界关注的研究领域。与手工制作的动作特征不同,深度学习方法在主动学习图像特征方面表现良好,这为人类动作识别技术提供了一个新