论文部分内容阅读
目前世界正面临着环境污染与能源危机的严峻挑战,基于光能转换的光电化学及光助催化技术,能够有效将太阳能转化为电能、化学能以及热能,可以实现环境污染物净化及能源资源化,在环境及能源领域有着广阔的应用前景。然而,半导体光电化学及光助催化技术存在着量子效率低,光吸收范围窄,可见光利用率低等缺陷,从实用化角度而言,进一步提高光能利用和转化效率及从分子水平上深入理解光致电荷转移及催化过程机制成为该领域的重要科学问题和研究热点。针对上述关键科学问题,本论文开发了一系列新型的多元尖晶石型光电功能材料,基于晶体结构、电子结构以及微观结构角度对半导体材料进行分子设计,调控构建了光催化与电催化、类芬顿等多技术耦合体系,结合多种现代物理化学表征手段和理论计算深入探讨了半导体光电功能材料的晶体结构和微观结构等结构特性、表面物理化学特性、光致电荷分离迁移和氧化还原过程机理、催化活性及耦合体系的协同增强机制,揭示了尖晶石型光电功能材料的结构特性与性能之间的相关性。具体研究内容如下:
(1)采用电化学以及表面化学修饰等技术调控构建了具有特定电子结构(n-n异质结结构)和微-纳结构的新型多元尖晶石Cu0.5Zn0.5Fe2O4修饰二氧化钛TiO2纳米管阵列电极复合体系[Cu0.5Zn0.5Fe2O4QDs/TiO2NAEs]。研究表明:Cu0.5Zn0.5Fe2O4QDs/TiO2NAEs复合体系的光电转化效率相对于未修饰的二氧化钛提高了约4倍,Cu0.5Zn0.5Fe2O4QDs/TiO2NAEs复合电极材料在10-6~10-7s内存在明显的电荷转移快过程,其光生空穴的寿命可驰豫至72.23μs,复合结构材料具有的n-n纳米异质结电子结构及表面-界面微观结构等结构特征对半导体光生电荷的空间分离以及表面界面迁移输运起重要的促进作用。最佳反应条件下,Cu0.5Zn0.5Fe2O4QDs/TiO2NAEs复合体系表现出优异的光电催化(PEC)降解抗生素磺胺甲恶唑和亚甲基蓝性能。多种原位谱学手段包括原位电子顺磁技术(In situ EPR)、瞬态吸收光谱(TAS)等谱学研究揭示出·O2-活性氧自由基是该催化反应中的主要活性物种,结合HPLC-MS-MS及催化反应表征的研究结果提出了活性氧物种与底物的相互作用及污染物的表面催化分解机制。Cu0.5Zn0.5Fe2O4QDs/TiO2NAEs复合体系具有优异的光电化学转换及光电催化性能的原因主要是由于尖晶石的晶体结构、表面-界面结构及n-n异质结电子结构可以促进光致电荷表-界面的分离及迁移,从而可以实现光能尤其是可见光的有效利用和转换。
(2)基于多技术耦合角度以及元素掺杂的角度,采用溶剂热等方法制备了铁酸锌铜多级卵黄壳纳米微球结构材料(CuxZn1-xFe2O4(0≤x≤1)HYSHNMs),并构建了CuxZn1-xFe2O4(0≤x≤1)/PMS/Vis[CZF/PMS/Vis]光催化类芬顿耦合体系。借助多种现代物理表征手段,系统地研究了CuxZn1-xFe2O4(0≤x≤1)HYSHMs多级核壳空心纳米微球材料的物理化学性质,揭示了光催化活化PMS耦合体系的协同作用机理。CuxZn1-xFe2O4(x=0.5)复合氧化物半导体中,其价带顶由Zn2p,Fe3d,Cu3d,和O2p共同组成,Fe元素的3d轨道主要作用于导带底。可见光激发条件下,CuxZn1-xFe2O4(x=0.5)价带中的电子可以分别从Zn2p,Fe3d,Cu3d,和O2p轨道迁移到导带Fe元素的3d轨道,形成更多的电子-空穴对和电荷密度。相对于CuxZn1-xFe2O4(x=1.0)和CuxZn1-xFe2O4(x=0.0)而言,CuxZn1-xFe2O4(x=0.5)HYSHNMs可见光响应范围更广,光生载流子的平均寿命高达14.5μs,具有更好的表面-界面电荷分离及迁移特性、更多的表面氧空位以及更高的光能利用转化及活化PMS能力及光助催化活性。研究发现CuxZn1-xFe2O4(x=0.5)HYSHNMs多元尖晶石卵黄壳空心纳米微球材料对抗生素恩诺沙星(ENR)的催化去除率达到90.5%,是单一光催化体系和PMS催化活化体系的3.6倍和2.6倍,并具有较好的磁性可回收性能。尖晶石光催化PMS活化耦合体系可以高效活化分子氧及产生ROS活性氧自由基,同时也可调变改善表面-界面光生电子-空穴的产生、空间分离及转移过程和效率。CuxZn1-xFe2O4多元卵黄壳空心纳米微球结构材料表面界面的光生载流子及金属占位离子协同活化分子氧及过硫酸盐而分别形成ROS活性氧物种以及硫酸根自由基SO4·-,同时光助催化过程产生的光生电荷也可促进PMS活化产生硫酸根自由基SO4·-。耦合体系中的硫酸根自由基SO4·-以及·OH羟基自由基共同作为活性物种协同氧化污染物,从而提高目标污染物ENR的催化降解效率。
(3)采用溶剂热湿化学方法调控构建了具有不同内部结构包括实心纳米微球结构(SMs)、不同核大小和壳层厚度的蛋黄壳纳米微球结构(YSHMs)以及双壳空心纳米微球(DSHMs)结构的多元尖晶石铁酸锌铜Cu-Zn-Fe多级纳米微球结构材料,研究了其在碳捕集和环境修复中的催化还原和催化氧化特性。利用多种原位表征手段分析了材料的物理化学特性,着重研究了热化学退火过程参数对形成多级纳米微球内部微观结构的影响及微观结构变化的规律,分析了表面界面微观结构的形成机制及揭示了材料微观结构与催化性能之间的构效关系。研究表明:当升温速率为20℃min-1将形成双壳空心纳米微球结构(DSHMs),并且具有双壳空心纳米微球结构的铁酸锌铜多元尖晶石复合材料DSHMs具有较高的催化活性。最佳反应条件下,所制备的尖晶石材料可见光CO2催化还原反应可分别产生8.8和38μmol的H2和CO。对于典型氟喹诺酮类抗生素-磺胺甲恶唑的催化氧化降解反应而言,不同内部结构的多元尖晶石多级纳米微球结构材料呈现不同的催化活性,催化降解抗生素的效率分别为80.4%(DSHMs双壳空心球结构)、66.7%(SMs实心球结构)、73%(YSHMs蛋黄壳纳米微球结构)。不同结构的多元尖晶石结构中的Fe与O原子、Cu与O原子、Zn与O原子之间存在较强的相互作用及促进电子传递的特点,DSHMs载流子的平均寿命为16.61μs,而YSMs和SMs载流子的平均寿命仅为11.97和0.28μs。Cu-Zn-Fe多元尖晶石DSHMs具有快速的光致表面界面载流子分离和迁移特性,光生电荷可以高效活化尖晶石半导体表面吸附的分子氧而形成ROS活性氧物种·O2-超氧自由基,通过调控多元尖晶石材料的晶体结构、电子结构及多层次的微观结构等结构特性可以调变其物理化学特性及催化性能。
(4)通过调变不同钴基尖晶石ACo2O4结构中的A位元素,利用溶剂热自模板方法调控合成一系列新型Co基尖晶石A1-xCox(AxCo2-x)O4(A=Zn,Ni和Cu)纳米微球复合材料。结合多种表征手以及DFT理论计算,探究了不同A位占位元素对钴基尖晶石材料晶体结构以及微观形貌等结构特性及光学、光电等物理化学性质以及催化活性的影响规律。对于Co基尖晶石材料而言,NiCo2O4倾向于形成固体微球(SMs)结构,具有较高的光生电荷分离能力。ZnCo2O4易于形成核壳空心纳米微球结构(CSHoMs),能吸附更多的CO2分子。CuCo2O4易于形成双壳空心纳米微球结构(DSHoMs),具有较大的比表面积,较多的氧空位含量。Co基尖晶石A1-xCox(AxCo2-x)O4(A=Zn,Ni,Cu)复合材料中,其金属离子和氧原子之间均存在着较强的相互作用,具有良好的可见光利用及高效的界面氧化还原等表面化学特性。利用CuCo2O4DSHoMs,NiCo2O4SMs和ZnCo2O4CSHoMs可以实现温和条件下的CO2可见光活化催化还原而生成CO和CH4。同NiCo2O4SMs和ZnCo2O4CSHoMs相比,CuCo2O4DSHoMs产生更多的CO(26.54分mol h-1),而NiCo2O4SMs的CH4生成量是CuCo2O4DSHoM约1.7倍。催化反应重复性试验表明,钴基尖晶石催化材料均具有良好的催化活性和稳定性,结合动态催化反应谱学表征结果提出了Co基尖晶石A1-xCox(AxCo2-x)O4(A=Zn,Ni,Cu)HNMs复合材料光催化CO2还原机理。
(1)采用电化学以及表面化学修饰等技术调控构建了具有特定电子结构(n-n异质结结构)和微-纳结构的新型多元尖晶石Cu0.5Zn0.5Fe2O4修饰二氧化钛TiO2纳米管阵列电极复合体系[Cu0.5Zn0.5Fe2O4QDs/TiO2NAEs]。研究表明:Cu0.5Zn0.5Fe2O4QDs/TiO2NAEs复合体系的光电转化效率相对于未修饰的二氧化钛提高了约4倍,Cu0.5Zn0.5Fe2O4QDs/TiO2NAEs复合电极材料在10-6~10-7s内存在明显的电荷转移快过程,其光生空穴的寿命可驰豫至72.23μs,复合结构材料具有的n-n纳米异质结电子结构及表面-界面微观结构等结构特征对半导体光生电荷的空间分离以及表面界面迁移输运起重要的促进作用。最佳反应条件下,Cu0.5Zn0.5Fe2O4QDs/TiO2NAEs复合体系表现出优异的光电催化(PEC)降解抗生素磺胺甲恶唑和亚甲基蓝性能。多种原位谱学手段包括原位电子顺磁技术(In situ EPR)、瞬态吸收光谱(TAS)等谱学研究揭示出·O2-活性氧自由基是该催化反应中的主要活性物种,结合HPLC-MS-MS及催化反应表征的研究结果提出了活性氧物种与底物的相互作用及污染物的表面催化分解机制。Cu0.5Zn0.5Fe2O4QDs/TiO2NAEs复合体系具有优异的光电化学转换及光电催化性能的原因主要是由于尖晶石的晶体结构、表面-界面结构及n-n异质结电子结构可以促进光致电荷表-界面的分离及迁移,从而可以实现光能尤其是可见光的有效利用和转换。
(2)基于多技术耦合角度以及元素掺杂的角度,采用溶剂热等方法制备了铁酸锌铜多级卵黄壳纳米微球结构材料(CuxZn1-xFe2O4(0≤x≤1)HYSHNMs),并构建了CuxZn1-xFe2O4(0≤x≤1)/PMS/Vis[CZF/PMS/Vis]光催化类芬顿耦合体系。借助多种现代物理表征手段,系统地研究了CuxZn1-xFe2O4(0≤x≤1)HYSHMs多级核壳空心纳米微球材料的物理化学性质,揭示了光催化活化PMS耦合体系的协同作用机理。CuxZn1-xFe2O4(x=0.5)复合氧化物半导体中,其价带顶由Zn2p,Fe3d,Cu3d,和O2p共同组成,Fe元素的3d轨道主要作用于导带底。可见光激发条件下,CuxZn1-xFe2O4(x=0.5)价带中的电子可以分别从Zn2p,Fe3d,Cu3d,和O2p轨道迁移到导带Fe元素的3d轨道,形成更多的电子-空穴对和电荷密度。相对于CuxZn1-xFe2O4(x=1.0)和CuxZn1-xFe2O4(x=0.0)而言,CuxZn1-xFe2O4(x=0.5)HYSHNMs可见光响应范围更广,光生载流子的平均寿命高达14.5μs,具有更好的表面-界面电荷分离及迁移特性、更多的表面氧空位以及更高的光能利用转化及活化PMS能力及光助催化活性。研究发现CuxZn1-xFe2O4(x=0.5)HYSHNMs多元尖晶石卵黄壳空心纳米微球材料对抗生素恩诺沙星(ENR)的催化去除率达到90.5%,是单一光催化体系和PMS催化活化体系的3.6倍和2.6倍,并具有较好的磁性可回收性能。尖晶石光催化PMS活化耦合体系可以高效活化分子氧及产生ROS活性氧自由基,同时也可调变改善表面-界面光生电子-空穴的产生、空间分离及转移过程和效率。CuxZn1-xFe2O4多元卵黄壳空心纳米微球结构材料表面界面的光生载流子及金属占位离子协同活化分子氧及过硫酸盐而分别形成ROS活性氧物种以及硫酸根自由基SO4·-,同时光助催化过程产生的光生电荷也可促进PMS活化产生硫酸根自由基SO4·-。耦合体系中的硫酸根自由基SO4·-以及·OH羟基自由基共同作为活性物种协同氧化污染物,从而提高目标污染物ENR的催化降解效率。
(3)采用溶剂热湿化学方法调控构建了具有不同内部结构包括实心纳米微球结构(SMs)、不同核大小和壳层厚度的蛋黄壳纳米微球结构(YSHMs)以及双壳空心纳米微球(DSHMs)结构的多元尖晶石铁酸锌铜Cu-Zn-Fe多级纳米微球结构材料,研究了其在碳捕集和环境修复中的催化还原和催化氧化特性。利用多种原位表征手段分析了材料的物理化学特性,着重研究了热化学退火过程参数对形成多级纳米微球内部微观结构的影响及微观结构变化的规律,分析了表面界面微观结构的形成机制及揭示了材料微观结构与催化性能之间的构效关系。研究表明:当升温速率为20℃min-1将形成双壳空心纳米微球结构(DSHMs),并且具有双壳空心纳米微球结构的铁酸锌铜多元尖晶石复合材料DSHMs具有较高的催化活性。最佳反应条件下,所制备的尖晶石材料可见光CO2催化还原反应可分别产生8.8和38μmol的H2和CO。对于典型氟喹诺酮类抗生素-磺胺甲恶唑的催化氧化降解反应而言,不同内部结构的多元尖晶石多级纳米微球结构材料呈现不同的催化活性,催化降解抗生素的效率分别为80.4%(DSHMs双壳空心球结构)、66.7%(SMs实心球结构)、73%(YSHMs蛋黄壳纳米微球结构)。不同结构的多元尖晶石结构中的Fe与O原子、Cu与O原子、Zn与O原子之间存在较强的相互作用及促进电子传递的特点,DSHMs载流子的平均寿命为16.61μs,而YSMs和SMs载流子的平均寿命仅为11.97和0.28μs。Cu-Zn-Fe多元尖晶石DSHMs具有快速的光致表面界面载流子分离和迁移特性,光生电荷可以高效活化尖晶石半导体表面吸附的分子氧而形成ROS活性氧物种·O2-超氧自由基,通过调控多元尖晶石材料的晶体结构、电子结构及多层次的微观结构等结构特性可以调变其物理化学特性及催化性能。
(4)通过调变不同钴基尖晶石ACo2O4结构中的A位元素,利用溶剂热自模板方法调控合成一系列新型Co基尖晶石A1-xCox(AxCo2-x)O4(A=Zn,Ni和Cu)纳米微球复合材料。结合多种表征手以及DFT理论计算,探究了不同A位占位元素对钴基尖晶石材料晶体结构以及微观形貌等结构特性及光学、光电等物理化学性质以及催化活性的影响规律。对于Co基尖晶石材料而言,NiCo2O4倾向于形成固体微球(SMs)结构,具有较高的光生电荷分离能力。ZnCo2O4易于形成核壳空心纳米微球结构(CSHoMs),能吸附更多的CO2分子。CuCo2O4易于形成双壳空心纳米微球结构(DSHoMs),具有较大的比表面积,较多的氧空位含量。Co基尖晶石A1-xCox(AxCo2-x)O4(A=Zn,Ni,Cu)复合材料中,其金属离子和氧原子之间均存在着较强的相互作用,具有良好的可见光利用及高效的界面氧化还原等表面化学特性。利用CuCo2O4DSHoMs,NiCo2O4SMs和ZnCo2O4CSHoMs可以实现温和条件下的CO2可见光活化催化还原而生成CO和CH4。同NiCo2O4SMs和ZnCo2O4CSHoMs相比,CuCo2O4DSHoMs产生更多的CO(26.54分mol h-1),而NiCo2O4SMs的CH4生成量是CuCo2O4DSHoM约1.7倍。催化反应重复性试验表明,钴基尖晶石催化材料均具有良好的催化活性和稳定性,结合动态催化反应谱学表征结果提出了Co基尖晶石A1-xCox(AxCo2-x)O4(A=Zn,Ni,Cu)HNMs复合材料光催化CO2还原机理。