【摘 要】
:
红外弱小目标检测技术在周界安防、目标跟踪、防火防灾等领域具有广泛的应用。红外弱小目标由于其尺寸小、特征不明显且经常受到背景杂波干扰等特点而导致检测难度极大,现有的目标检测方法存在严重的漏检和虚警。针对这些问题,本课题基于深度学习理论开展了红外弱小目标检测方法的研究。主要工作如下:(1)提出了基于孪生Transformer的单帧红外弱小目标检测方法。该方法将原图划分为若干个不重叠的子图,然后将目标子
论文部分内容阅读
红外弱小目标检测技术在周界安防、目标跟踪、防火防灾等领域具有广泛的应用。红外弱小目标由于其尺寸小、特征不明显且经常受到背景杂波干扰等特点而导致检测难度极大,现有的目标检测方法存在严重的漏检和虚警。针对这些问题,本课题基于深度学习理论开展了红外弱小目标检测方法的研究。主要工作如下:(1)提出了基于孪生Transformer的单帧红外弱小目标检测方法。该方法将原图划分为若干个不重叠的子图,然后将目标子图与一组训练好的包含位置信息的模板分别送入孪生特征提取网络以提取特征。最后,将提取到的子图特征与模板特征送入特征匹配模块,通过二者的匹配程度来确定目标子图中是否包含目标并计算坐标。该方法以目标整体为对象进行特征提取,这种特征提取方式充分考虑了目标的上下文信息,使得特征提取结果更加充分。实验结果表明,单帧检测方法在一些目标突出等简单场景下拥有较高的检测率。(2)提出了多帧红外弱小目标融合检测方法。使用多张连续数据帧,通过多帧目标融合模块分析连续图像中背景与运动目标的深层语义特征来识别运动目标,以此突出目标并抑制背景,将处理完成的特征图送入优化后的目标检测网络预测目标。实验结果表明,相比于单帧目标检测方法,多帧目标融合检测方法即使在复杂背景下也依然拥有较高的平均检测率与较低的虚警率,表现出了更优的检测性能。(3)进行了充分的消融实验和对比实验。本课题分析了多帧融合检测网络主要模块中的不同参数可能对网络性能产生的影响,采用不同的消融实验进行对比测试以使网络的最终评估指标达到最优,并为类似任务的网络设计提供了实验参考。选取了现存的几种检测方法在公共数据集上进行测试。实验结果表明,本课题提出的检测方法的平均检测率与虚警率分别为0.985和1.96×10-4,相比于现有最好方法的0.765和9.5×10-4,本课题将平均检测率提升了28.76%,虚警率下降了79.37%。
其他文献
差分演化(Differential Evolution,DE)作为一种基于种群的全局优化算法,具有不受梯度信息限制和控制参数少等特点,被广泛应用于传统数学方法无法求解的复杂优化问题中。DE中不同的变异策略具有不同的搜索性能,选择和问题特征相匹配的变异策略会极大地提高算法的搜索性能,因此自适应变异策略选择成为提升DE算法性能的最有效方法之一。然而,现有的变异策略自适应选择方法通常以近几代演化数据的统
作为一种基于种群的全局优化算法,差分演化算法(Differential Evolution,DE)凭借其简单的结构和高效的性能,从演化算法家族中脱颖而出。DE的性能受算法参数和变异策略的影响,自适应参数和变异策略控制是提升DE优化性能的最有效方法。然而,现存自适应参数和变异策略控制方法存在两方面问题:(1)忽略了对演化历史种群数据中隐含的有益特征信息的挖掘以及这些特征信息的合理利用;(2)不同状态
疲劳检测是一个非常重要的研究领域,疲劳状态严重影响个体的生产效率和工作安全,如果不能及时识别和处理,可能会导致不良后果。因此,对疲劳状态进行有效的检测和管理非常重要,能确保人们的身体安全,有助于推动社会的进步。由于疲劳状态是一种高度个体化和主观感受强烈的生理状态,这使得建模和分析疲劳状态变得更加困难。本文研究的重点在于使用多模态生理信号(脑电信号、心电信号和肌电信号)来检测操作员在模拟飞行操作环境
随着无人机技术的飞速发展,无人机自组网成为无人机应用中备受关注的研究领域之一。无人机自组网可以解决无人机之间通信障碍的问题,广泛应用于军事和民用领域。然而,无人机节点的能量消耗不均衡以及链路通信稳定性差的问题仍然是制约无人机自组网性能的主要瓶颈,而合适的路由协议是解决上述问题的关键。动态源路由(Dynamic Source Routing,DSR)协议广泛应用于资源受限的自组网,具有较低的路由开销
近年来,基于深度学习的遥感图像目标检测在很多场景和领域中得到了广泛的应用。但在针对海面遥感目标的检测任务时,由于卫星遥感图像数据采集成本高、成像质量不稳定,导致可用于深度学习训练的样本非常少。因此,为了更加容易地获得数量多、质量好、样式可控的海面遥感目标图像,本文提出了基于样式(Style)的海面遥感目标图像生成对抗网络。该方法结合了生成对抗网络(Generative Adversarial Ne
当今社会移动互联网高速发展,网络数据呈指数级增长。然而这些海量数据大多属于无结构异质数据,尽管其蕴含丰富价值,却难以被有效利用。通过实体关系抽取技术,可以有效地提取出无结构文本中的实体与实体之间的关系,并将这些关系以结构化的三元组形式呈现,从而有效地提取出文本中的重要信息,满足人们对无结构数据的需求。这些结构化三元组对知识图谱,推荐系统,自动问答等人工智能领域有着重要的意义与价值。近年来随着深度学
极化码(Polar Codes)是在理论上被证明可达香农极限的信道编码方案,与其他纠错码相比具有编译码复杂度低、构造简单等特点,但传统的译码算法建立数学模型和求解都较为复杂。通信系统中的译码过程可以看作是对信息的分类,而深度学习可以对大量训练数据进行有效处理并从中学习到相关的特征,能够解决很多非线性的复杂建模任务,因此可以将深度学习用于通信系统中的译码过程。有鉴于此,本文对极化码与深度学习相结合的
随着自行火炮功能、结构和集成技术的日益复杂,故障诊断和维修保障的要求也越来越高。同时,自行火炮使用人员的流动性大,需要保障装备的培训学习效果和减少诊断推理对专业技能及经验的依赖,以便使用人员和维修人员能够快速熟悉装备,并在故障发生时准确迅速地应用知识完成故障诊断和故障排除。IETM的应用不仅为复杂装备的故障诊断提供了便利,还能满足装备的维护保障和培训需求。为了提升自行火炮的故障诊断效率和保障能力,
目标跟踪作为计算机视觉领域的一项重要任务,在虚拟现实、智能交通、无人机等领域具有广泛的应用。随着机器学习技术的进一步发展,目标跟踪技术有了很大的改进,然而因为遮挡、背景杂乱和出视野等挑战因素的存在,实现复杂场景下的鲁棒跟踪仍存在一定的局限性。为了提升孪生网络目标跟踪算法的鲁棒性和定位精度,本文从以下两个方面进行研究。(1)针对复杂场景下的目标形变与相似物干扰的问题,在Siam RPN算法的基础上,
互联网技术的飞速发展和新闻平台的多样化,使得人们能便捷地获取、分享信息,同时也产生了“信息过载”。这使人们从海量信息中获取知识的效率受到严重挑战,推荐系统专于应对这一挑战。它是在用户需求不明朗的情况下,通过对用户行为习惯等信息进行综合分析,从而挑选出最合适的内容推送给用户。然而,在新闻场景下,只有部分研究通过深入分析文本内容来确立用户偏好,如DKN算法(Deep Knowledge-aware N