论文部分内容阅读
在弯曲时空量子理论领域,人们总需要处理与单个粒子或量子场的动量和角动量相关的问题。本文分别研究了弯曲时空中局域动量-角动量算符和局域协变动量-角动量算符所满足的对易关系和各自的SO(3,1)规范变换性质。我们引入了局域的规范引力场分解方法,通过这种分解,提出了一组既满足SO(3,1)规范不变性又满足一种自洽标架的对易关系的动量-角动量算符。 我们知道,旋转球体能够产生所谓的“引力磁场”,它可以体现为黎曼曲率张量的分量。引力磁场很难被探测,因为它的强度仅为经典的牛顿引力场的10-10。然而,引力磁场的探测却具有十分重要的意义:它不仅是对广义相对论的基本预言的检验,也是在太阳系内验证马赫原理的最为可行的途径。本文回顾了利用环绕地球飞行的处于空间固定指向的引力梯度仪探测引力磁场效应的方案,研究了两种重要的能够影响实验的误差源:卫星定位误差和地球多极矩。通过对前者的研究,提出了为构建滤波模版需达到的卫星定位精度;通过对后者的分析,给出了一系列可供选择的卫星轨道高度。另一方面,本文研究了利用惯性陀螺为引力梯度仪定向以探测“Lense-Thirring”效应的方案,研究表明卫星定位误差和地球多极矩对该方案的影响都可以被忽略。