论文部分内容阅读
酵母代谢产生的醛类物质不仅会带来不良的风味,也会加速啤酒老化,影响成品啤酒的质量。因此,啤酒中的醛类物质含量应当受到严格控制。乙醛作为啤酒中含量最多的羰基化合物,降低其在啤酒中的含量一直是研究的重点之一,更是清爽型啤酒关注的焦点。目前啤酒酵母的育种技术已经取得了一定的进展,但仍存在靶向性差、效率低等问题;而另一方面,对酿造过程中啤酒酵母乙醛代谢调控的认知不足使得低乙醛啤酒酵母选育策略匮乏。为此,亟需研发新的育种技术及育种策略用于低产乙醛啤酒酵母的选育。本论文以Design-Build-Test-Learn(DBTL)循环育种策略为指导,拓展啤酒酵母快速育种技术与低乙醛育种策略。本论文主要研究内容和结果如下:(1)建立增变因子辅助啤酒酵母快速进化育种技术:对酿酒酵母DNA聚合酶催化亚基POL3进行定点突变,获得了具有不同增变率的酿酒酵母增变因子POL3/L612M、POL3-01和POL3-01/L612M,这些增变因子的引入使得酵母的突变率分别提高了约21、53和237倍。利用增变因子结合连续压力培养可以实现不同遗传背景酿酒酵母菌株的快速进化,且对同一酵母而言,增变因子增变率越大效果越明显。应用增变因子辅助育种技术结合醛脱氢酶抑制剂(双硫仑)抗性筛选,快速选育出了一株符合生产要求的低乙醛啤酒酵母菌株MGA。该菌株乙醛产量约6-7 mg/L,具有良好的遗传稳定性和发酵稳定性。对进化前后菌株的全基因组序列进行了比较分析,发现增变因子可以在基因组层面上造成多种类型的突变。相较于常压室温等离子体(ARTP)诱变,增变因子辅助快速进化育种技术造成的突变数量更少,而在突变类型及位点选择方面具有相似的突变多样性及广谱性,因此增变因子辅助育种技术可作为新的快速育种技术在啤酒酵母育种工作中加以应用。(2)解析啤酒酵母低产乙醛调控机制:比较了低产乙醛菌株MGA和出发菌株M14在基因组水平、转录水平和代谢物水平上的差异,并基于各层次之间的相关性和一致性推断:菌株MGA由于磷酸化修饰相关基因、转录活性及转录调控相关基因和蛋白转运相关基因上的突变造成TCA循环相关基因表达水平的上调及相关代谢产物产量的增加。而这些变化又进一步造成了胞内还原力水平(NADH/NAD+)的增强,从而间接促进了乙醛的还原。反向代谢结果表明菌株MGA中TCA循环关键基因(CIT1、CIT2和IDH1)的上调是造成该菌株胞内还原力水平提高以及乙醛产量降低的主要原因。在菌株M14中过表达自身FRD1基因可使得胞内还原力水平降低,相应改造菌株的乙醛产量明显增高。这些结果表明啤酒酵母在发酵过程中可以通过调节TCA循环活性改变胞内还原力水平,从而影响乙醛的最终产量。相关性分析结果表明在同一遗传背景酵母中,酵母胞内还原力水平与乙醛最终产量负相关(r=-0.95)。(3)比较醇脱氢酶活性和辅因子NADH水平对发酵过程中乙醛还原的影响:首先通过代谢工程改造方法获得高胞质NADH水平菌株,高线粒体NADH水平菌株及高醇脱氢酶活性菌株。进一步地,对这些菌株发酵过程中乙醛产量变化及相关指标进行跟踪,阐述发酵过程中不同乙醛调控因子对菌株乙醛特性(峰值、还原速率和最终产量)的影响。研究结果表明提高胞内NADH水平(线粒体或胞质)会加速发酵中后期乙醛的还原,这主要是因为乙醛是厌氧发酵情况下细胞维持氧化还原平衡重要的电子受体。然而,由于胞质氧化还原平衡存在多种其它的调控途径如甘油生成途径,因此提高胞质NADH水平对加速乙醛还原的作用效果弱与增强线粒体NADH水平。另一方面,ADH1和ADH3是最主要的参与乙醛代谢的醇脱氢酶基因。提高醇脱氢酶活性未能提高乙醛还原阶段的还原总量,但是使得发酵前期的乙醛峰值明显降低,这可能时是因为前期较高的醇脱氢酶活性过早的将乙醛引向乙醇,该结果也造成了发酵前期啤酒酵母细胞生长缓慢,发酵迟滞等现象。以上结果表明发酵过程中菌株的乙醛特性受到多个调控因子在不同时空的影响,降低乙醛最终产量可从降低乙醛峰值和加速乙醛还原两个维度着手。(4)高NADH育种策略可行性分析及应用:首先对增强酵母胞内NADH水平可能对啤酒其它风味物质产量及风味稳定性的影响进一步评估,结果表明菌株胞内NADH水平增强会使其它风味物质产量发生明显改变,主要表现为醇类物质含量的增高和醛类物质含量的减少。而在风味稳定性上,使用高胞内NADH水平菌株发酵获得的啤酒发酵液抗老化能力及风味稳定性明显增强。因此,由于更多的积极作用,高NADH育种策略可以作为低产乙醛啤酒酵母选育的合理策略。进一步地,提出使用2,4二硝基苯酚(DNP)作为能够引起胞内NADH波动的效应物,配合增变因子辅助进化育种技术筛选得到了高NADH菌株DNPR-17。在三角瓶水平,该菌株在其它发酵性能变化不大的情况下,乙醛产量下降至5.14 mg/L且发酵液风味稳定性明显提高。该结果表明DNP可作为新的筛子选育低产乙醛酵母菌株。最终,为了符合现阶段工业菌株育种要求,使用常压室温等离子体诱变技术配合DNP筛选获得另一株低产乙醛啤酒酵母XX-01,该菌株乙醛产量下降至6.32 mg/L。