双级行波环路热声热机回热器结构及调相的机理研究

来源 :广东工业大学 | 被引量 : 0次 | 上传用户:wqhao2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
行波热声发动机是一种能量转换装置,具有结构简单、无运动部件、可靠性高且其运行工质为惰性气体。近几十年来,随着热声热机技术受到了人们的广泛关注,热声发动机也取得了许多有建设性的进展,在热声制冷、热声发电等应用方面上也取得了较多阶段性成果。但是由于热声发动机在实用化方面仍未十分成熟,与传统的内燃机相比还具有较大差距。多级行波热声热机由于其本征效率高、起振温度较低且能流密度大的优点,已成为了目前热声热机的热点课题。为了更好的去探究双级行波热声发动机性能的优化方法,本文将采用模拟与实验相结合,从热声基本理论出发,基于Delta EC热声模拟仿真软件构建数值模型。探究热声发动机回热器与谐振管对热声转换的影响。主要研究内容如下:(1)由于回热器中温度变化梯度较大,气体工质的粘性系数随着温度升高变大,在回热器高温段和中低温段按梯度分层放置小目数和大目数的丝网,有效降低回热器高温段处的粘性损失,加强热声转换能量,从而获得更佳的声功输出。在不改变其余条件下,单层回热器中所产生的能量约为501.7W,而将回热器分为多层回热器处丝网目数从冷端到热端的梯度为140-105目时,回热器产生的能量约为530.32W,热声发动机的性能较单层时增加约5.7%。(2)根据不同材料导热性能的不同,合理采用不锈钢-铜的填充材料的组合,能够增强工质在回热器间的换热能力。通过模拟结果可知填充适当的铜丝网能够有效地提高回热器所产生的能量。在回热器处添加2.5cm的铜丝网时,回热器内产生的能量最大为609.86W,与单种材料丝网结构相比提高约15%,但是过长的铜丝网会使得部分热量不经过热声转换而传至冷端。但是总体上来说,在回热器处添加铜丝网能够有效提高双级行波热声发动机的热声转换能力。(3)根据线性热声理论,通过改变谐振管截面积能够有效调节双级行波热声发动机的声场结构。通过模拟结果发现,基于谐振管处原本的压力振幅与体积流率及其相位,将其中10cm谐振管内直径长度在位置1处增大至8cm时,回热器处的相位从-41.7°变为-36.2°,在位置2处减小至3cm时,回热器处的相位从-41.6°调节至-33.9°。使其相位更接近于行波状态。合理调节谐振管的截面积大小,调节其相位变化,进而实现其双级热声发动机的回热器在接近行波的相位状态下工作。(4)搭建双级行波热声发动机实验台,在不同的热端温度的条件下对系统的频率、声功等特性进行实验研究,发现不同热端温度对系统频率影响变化不大,但随着换热器温差上升,负载提取的声功也越多。与数值模拟数据结果进行对比后发现较为吻合,说明该数值模型能够有效地模拟双级行波热声实验台的运行特性。
其他文献
有机朗肯循环(Organic Rankine Cycle,ORC)在中低温热能(太阳能、地热能和生物质能及余热等)发电方面具有广阔的应用前景。在ORC系统中,换热设备(?)损和成本在系统中占主导地位,然而当前对于ORC系统的实验研究及换热设备的变工况运行特性的研究尚不够深入,准确获得变工况下换热器各区域传热、流动及不可逆损失分布和迁移特性,对于深入理解换热器变工况性能、优化设计换热器以匹配ORC系
在日常工作的焊接任务中,工人的客观焊接环境通常比较恶劣,且难以全天候保持高度精神状态不休息的工作,而引入焊接机器人可以有效的缓解上述问题并提升焊接高质量成品率。为了焊接机器人更好的应用于实际作业生产中,研究焊接机器人运动学及轨迹规划对其发展具有重大意义。本文研究课题以国工信沧州有限公司研发的焊接机器人为样机,分析该焊接机器人本体结构的运动学以及焊接曲线的轨迹规划,使焊接机器人运行稳定的同时精准高效
随着社会人口增长和能源危机现象日益加重,寻找新能源代替传统能源愈发重要。质子交换膜燃料电池(PEMFC)除了具有一般燃料电池的优势外,还具有结构简单、工作温度低、发电效率高等突出优点而受到广泛关注。然而,PEMFC运行中质子交换膜要始终保持一定的湿度,湿度过大,会发生水淹现象,湿度不够则会造成膜脱水。这些都会对燃料电池的性能和寿命造成严重影响。为了确保PEMFC在可靠的温度范围内运行,并使电池内温
木质素热解油由各种酚类化合物组成,需要在较高温度下才能实现完全加氢脱氧(Hydrodeoxygenation,HDO)提质,而高温会导致积碳、催化剂烧结和能源消耗大等问题,制约着木质素向烃类液体燃料转化方面的发展。因此,通过改性催化剂提升反应过程中的传热传质特性实现木质素热解油在较低温度下的高效加氢脱氧,对于木质素高效能源化利用具有重要意义。双金属之间的协同效应能有效提升催化剂活性,表现出比单金属
铜基自润滑复合材料是通过特定的制备工艺将固体润滑剂和其他附加成分添加到金属铜基体中,从而具有一定机械强度和自润滑性能的复合材料。它兼具金属铜优异的导电/导热性能、磨合性能和固体润滑剂良好的润滑性能,广泛应用于工程摩擦零件,如电刷、轴承、衬套等。然而,由于金属铜和固体润滑剂在比表面积、密度和表面化学性质等方面存在显著差异,导致自润滑铜基复合材料的界面结合能力较弱,从而极大地削弱了它的减摩、耐磨性能。
采用摩擦搅拌焊(FSW)焊接6061-T6铝合金(Al)和AZ31B镁合金(Mg)板材。借助光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)及X射线衍射分析仪(XRD)分析了异质焊缝的微观组织、元素分布和物相组成;使用显微硬度仪研究了异质焊缝及母材的硬度分布规律;利用电化学工作站测试了异质焊缝各区与母材的开路电位、自腐蚀电位,自腐蚀电流密度及阻抗值;采用浸泡腐蚀试验法研究了焊缝各区与母材的
随着地球不可再生资源的短缺,人类面临的资源危机日渐突出。太阳能,风能等可再生资源的利用举足轻重,人们在日常生活中对储能器件的依赖日益凸显。锂硫电池作为新一代电能储存装置,特有的高理论比容量、高能量密度、硫单质在地球上含量丰富、无毒且对环境友好的特点,有望成为了下一代储能器件的最具实际应用的二次电池。但是,锂硫电池目前面临着“穿梭效应”的问题以及硫正极材料导电性差、体积膨胀大、电池循环稳定性差等一系
块体非晶合金卓越的性能已展现出它作为支撑未来高新技术的重要材料的前景,然而要广泛应用于工程领域就必须克服加工成型问题。因为其室温下一般不超过2%的塑性应变,所以在室温下难以加工。而块体非晶合金在过冷液相区具有粘性流动特性,所以在该温度范围内可进行超塑性成型或铸造成型来获得形状复杂的非晶合金零部件。另外,开发出具有大塑性且热稳定性良好的块体非晶合金一直是非晶合金材料研究领域的热点。因此,自主开发设计
三元乙丙橡胶(EPDM)具有电绝缘性好、耐老化、耐溶剂、填充能力强等特点,但是EPDM属于本体不阻燃的聚合物材料,其自身的极限氧指数很低。当火灾发生时,容易造成烟雾窒息性死亡,因此研究低烟阻燃的EPDM橡胶具有理论和实践意义。本文合成含磷聚氨酯弹性体,并作为碳源,与聚磷酸铵(APP)组成膨胀型阻燃剂(IFR),阻燃EPDM;同时加入抑烟协效剂(八钼酸铵或羟基锡酸锌)与上述IFR复配,研究阻燃剂对E
随着城市机动车数量快速增长,机动车鸣笛等交通噪声对城市环境的影响也越来越大,在禁鸣路段鸣笛的现象时有发生,干扰了市民的正常生活。为了监控机动车的违章行为,交通管理部门在部分路段安装了鸣笛抓拍系统。鸣笛抓拍系统可以定位违章鸣笛车辆的具体位置,为了处罚违章鸣笛车辆,需要识别车辆的车牌号码。使用人工识别车牌号码费时费力,而现有大多数车牌识别算法在一些受限的场景中获得不错的识别效果,但在声源定位这种开放式