镍基复合氧化物催化剂制备及小分子氧化性能研究

来源 :成都大学 | 被引量 : 0次 | 上传用户:lailinyang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
镍基复合氧化物是一种具有高性价比的催化剂材料,在电化学能源领域中被广泛应用于析氧反应和甲醇氧化反应等小分子氧化的阳极催化。本文采用电沉积法制备了一系列高活性和持久性的镍基复合氧化物催化剂,用于提升小分子氧化反应效率。可作为未来金属空气电池和直接甲醇燃料电池中具有潜在用途的阳极催化剂。在众多镍基催化剂中,镍铜复合氧化物表现出优异的析氧催化性能。为了进一步提高NixCu1-x/Cu O/Ni(OH)2的析氧反应(OER)性能,合理设计合成了一种新型短针状NixCu1-x/Cu O/Ni(OH)2复合氧化物。在电子扰动和表面形貌的调控下,Ni0.7Cu0.3/Cu O/Ni(OH)2的起始电位和过电位分别达到了136.6 m VRHE和160m VRHE(vs.3.33 A g-1),Tafel斜率为66 m V dec-1。此外,复合氧化物直接生长在玻碳片上,玻碳片作为粘结剂和无碳电极,具有200,000s的优异稳定性,活性损失39%。由于Cu的电子扰动作用以及Ni-Cu、Cu O和Ni(OH)2之间的协同作用,得到的Ni0.7Cu0.3/Cu O/Ni(OH)2复合氧化物的活性和稳定性显著高于NixCu1-x合金、Cu O和Ni(OH)2。这种具有成本效益的OER电催化剂,可能取代商用的Ru/Ir基材料。其次,通过电沉积方法证明了前驱体溶液的阳离子(Fe3+/Ni2+)浓度是如何决定OER的耐久性和活性的。结果表明,该工业化方法可以很容易地实现OER性能与制造成本之间的平衡。优化后的Ni0.6Fe0.4/Fe2O3/Ni(OH)2(NFO-0.6)复合氧化物的OER性能最佳,过电位为218 m V,Tafel斜率为122m V dec-1,长时间工作12小时,活性损失约为38%。活性演化表明,NFO-0.6的新稳定性可能是由表面氧化物和金属NixFe1-x在长期运行过程中(NixFe1-x→Fe2O3/Ni(OH)2)转化引起的。本工作证明了NFO-x活性和耐久性的可调性,这在促进水分解的实际应用方面显示了巨大的潜力。基于上述镍基催化剂在析氧反应中表现出高催化活性和耐久性,采用电沉积法制备Pd/NixCu100-x/Ni OOH(PNCH-x)协同材料作为甲醇氧化催化剂,以解决实际应用中补充催化剂后活性损失严重的问题。在这里,PNCH-x的OER性能对PNCH-x的MOR耐久性提高和失活Pd的再活化特性起决定性作用。结果表明,PNCH-83对甲醇氧化具有自适应性和活化性,表现出1565A gPd-1的新活性,耐久性~200,000s,周期性耐久~540,000s。这些发现和本研究的方法将有助于理解协同效应,并代表着提高MOR耐久性的重要一步。
其他文献
锂离子电池(LIBs)是一种高效储能装置,大量应用于便携式电子设备、电动汽车和发电站的储能系统。然而,近年来搭载锂离子电池的设备起火爆炸等问题频繁出现,锂离子电池的安全性受到了人们的广泛关注。隔膜作为电池的关键组成部分,不但影响着电池的电化学性能,还能防止电池内正负极直接接触而短路。为了改善隔膜的安全性,本实验采用热稳定性和电解质亲和性出色的聚偏氟乙烯-六氟丙烯(PVDF-HFP)材料作为基底,优
学位
本研究的目的是结合计算机辅助设计技术、医学建模技术和3D打印技术来完成踝足矫形器的设计及优化方案,通过有限元分析来计算,模拟踝足矫形器的力学性能,使其舒适性和稳定性更优于传统固定式踝足矫形器。通过模型的有限元分析,对力学性能,包括最大应力、应变、变形量分析计算,评定其结果,优化其方案。结果表明:无论是最大变形量,还是最大应力应变,均优于传统结构的踝足矫形器。在材料选择上,踝足矫形器的主体材料选择聚
学位
随着人类社会及科技的不断发展,传统的化石能源已不能满足人们的需求,尤其是在电动车出现以后,这个问题就显得尤为明显。发展稳定可靠的储能系统迫在眉睫,锂离子电池由于其高能量密度、高稳定性方面的优势,近年来一直是储能系统领域的研究热点。电池的电极材料是决定电池性能的主要因素,目前商业化程度最高的石墨负极材料比容量较低,难以满足人们的需求。过渡金属氧族化合物拥有理论容量高、储藏丰富、环境友好能优势,是优秀
学位
从工业革命开始,能源就是人类社会发展的重要力量和物质基础。随着我国十四五规划和2035远景目标的提出,碳中和、碳达峰概念已经成为各行各业所关注的重点。近年来由于化石燃料的枯竭和能源需求的增长,研究新型储能技术的需求也在急剧上升。目前,由于锂离子电池(LIBs)具有能量密度高、工作电压高(3.7~3.8 V)、循环性能好、环境友好等优点,所以被广泛应用于各类便携式电动装置。其中,锂离子电池的负极材料
学位
传统非可再生能源的大量使用导致的能源危机和环境污染等问题日益严重,这使得探寻和发展新的清洁可再生能源势在必行。在众多的可再生能源中,氢能因其储量丰富和清洁无污染等特点被认为是未来最具潜力的化石燃料替代品。电解水制氢技术因其制氢过程简单和原材料来源广泛等特点,是最有前景的制氢方式之一。但受限于阳极析氧反应(OER)缓慢的动力学和较高的过电位,电解水制氢技术的整体效率仍比较低下。因此,为提升电解水的整
学位
液态锂铅(PbLi)氚增殖包层具有结构形式简单、高氚增殖比、热电转换效率高以及可在线提氚和换料等诸多显著优势,是聚变堆最具有发展潜力的液态包层设计方案之一。安全高效地从液态PbLi中提取氚是液态PbLi氚增殖包层设计方案可行性的重要保障。鼓泡塔是连续式气液接触反应设备,因其结构简单、传热传质效率高等优点,被选用于提取液态PbLi中的氚。鼓泡塔内的气液两相流体力学与传质特性是设计和优化鼓泡塔的研究重
学位
塑料食品包装材料难以降解,已经严重影响陆地和海洋的生态系统,危及人类健康。因此,研发新的可生物降解的包装材料是势在必行。天然聚合物具有良好的生物相容性和可降解性的优点。把天然抗菌剂或抗氧化的活性物质添加到天然高分子聚合物中可得到活性包装材料。这类食品包装材料可以延长食品的保质期。姜叶中富含多酚黄酮类化合物,其具有抗氧化和抗菌性能。提取这类天然活性产物复合天然聚合物基底中,制备出具有良好抗菌抗氧化性
学位
可再生能源的广泛应用,需要开发高效、低成本的绿色能源存储系统。锂离子电池(LIBs)早已成熟的应用于生活场景中,钠离子电池(SIBs)和钾离子电池(PIBs)作为“后锂离子电池”,其工作原理和电池器件与锂离子电池相似,同样可作为高能量密度储能系统。然而碱金属离子半径各不相同,传统的锂离子电池石墨负极并不适合应用于SIBs和PIBs。因此,如何研发具有良好电化学性能的先进负极材料,对碱金属离子电池的
学位
恶性肿瘤是一个国际性的健康挑战,它对人类健康造成了重大威胁。化疗是一种有效的治疗癌症的方法,但化学药物会对正常细胞产生一定毒性。因此,开发一种更加安全、更加高效的肿瘤诊断治疗纳米平台,将为癌症患者带来福音。其中,光学治疗具备损伤小、危害性低和副反应少等优点,其治疗原理是在特定的光照下,产生单线态氧(~1O2)或产生高温,杀死肿瘤细胞。同时,在二维纳米材料家族中,黑磷(Black phosphoru
学位
镍基高温合金因其优异的高温强度和良好的组织稳定性,在燃气轮机关键热端部件上获得广泛应用。然而,由于燃气轮机燃油中含有微量的S、Cl、Na、K等杂质,燃烧时与空气中的O2反应,并在部件表面沉积一层熔融状态的Na2SO4和Na Cl盐膜,导致高温合金部件表面发生热腐蚀,同时由于长期温度不均,部件需要承受极大的热应力。因此,有必要开展对该部件关键材料Nimonic263和Haynes230合金焊件的抗热
学位