论文部分内容阅读
在恶劣的使用环境下,热疲劳开裂是压铸模具最重要的失效形式之一。压铸模具在服役过程中受到的机械应力和热应力波动均会诱发细小裂纹,这些裂纹将进一步扩展并最终导致材料失效。然而由于试验条件的限制,目前的研究工作多集中于研究热疲劳过程中热应力对材料微观结构的影响,而对于机械应力这部分的影响则鲜有涉及。由于当温度和应变场同时交变时,很难分析机械应变部分对材料显微结构的影响,因此本文聚焦于恒定温度下的单轴加载应变控制试验,并借助光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)等检测手段系统研究了压铸模具材料在热机械载荷作用下的微观组织演变规律,探究了材料在热机械载荷作用下的循环软化和损伤机理,并率先揭示了压铸模具材料中存在应变诱导碳化物析出和粗化的现象,能够为合金成分和热处理工艺的优化提供理论依据,也能为材料的失效分析以及模具设计提供理论指导。利用膨胀仪对4Cr5Mo2NiV钢的相变特性进行了测定,并综合考虑晶粒度、残余奥氏体及强韧性配比对4Cr5Mo2NiV钢的热处理工艺进行了优化。结果表明:4Cr5Mo2NiV钢的最佳淬火温度为1030℃,回火工艺为于600~610℃回火两次,每次保温2h。与4Cr5Mo2V钢相比,4Cr5Mo2NiV钢的淬透性得到较大提高,同时仍具有优良的热稳定性能,满足当前大截面压铸模具的要求。基于恒定温度下单轴机械应变控制模式首先以广泛应用于压铸模具制造中的4Cr5MoSiV1(H13)钢为对象进行了试探性试验。结果表明:外加机械应变使材料发生了形变,加速了材料的软化,并且对材料中碳化物的数量和尺寸也有较大影响。其次,重点对4Cr5Mo2NiV钢的等温疲劳性能进行了研究。结果表明:随着机械应变幅值的增加,4Cr5Mo2NiV的等温疲劳寿命降低,在循环周期为40 s,试验温度为600℃的条件下,当加载的机械应变幅值由0.5%增加至1.1%时,材料的疲劳寿命由633周次下降至169周次。机械应变使材料的形变和损伤程度增加,主裂纹垂直于加载方向而萌生,最大裂纹处于试样标距部分的正中间。最后,采用OM、SEM、XRD和TEM等微观分析手段对比研究了机械载荷作用和静态等温过程中材料的马氏体回复程度、位错密度和位错组态变化以及碳化物的析出和粗化等微观结构的演变规律。结果表明:在应变幅为-0.7%~+0.7%的机械应变作用下循环4 h后,试样的位错密度由淬回火态时的21.38×1015 m-2下降至8.14×1015m-2,而位错组态则由原先的高密度的缠结状态转化为低密度的网状分布状态。静态等温4 h时试样中单位面积的碳化物数量为24.7个/μm2,而加载机械应变幅值为0.7%循环4 h时此值已达到77.1个/μm2。其中长轴小于100 nm的短棒状和直径小于100 nm的小球状以及椭球状碳化物的单位面积数量分别由静态等温时的9.5个μm2、7.0个μm2、1.5个/μm2增加为28.3个/μμm2、38.8个/μm2、4.4个/μm2。热机械载荷作用下碳化物的平均等效半径的三次方与试验时间并非呈线型关系,其碳化物的粗化速率远大于等温时效过程中的粗化速率。马氏体的回复、位错的运动及碳化物的析出和粗化是材料发生循环软化和累积损伤的主要原因。