论文部分内容阅读
东南极拉斯曼丘陵及邻区地质演化的年代格架以及地质构造背景的研究对了解Rodinia的聚合和裂解以及随后的Gondwana形成演化具有重要意义。本文针对这一重要科学问题,对拉斯曼丘陵及邻区高级片麻岩区的典型岩石进行了地球化学、同位素年代学、同位素地球化学的研究工作,取得的主要进展如下:1:对本区“基底”岩石镁铁质-长英质复合片麻岩其地质特征、地球化学特征进行了分析,并应用多种同位素年代学方法进行了同位素年龄的研究,认为镁铁质—长英质复合片麻岩的原岩为双模式火山岩,结晶年龄为约1100Ma;随后于990Ma进行第一次麻粒岩相变质事件;接着在约600-500Ma的泛非期发生第二次麻粒岩相变质作用的叠加。本区“基底”岩石形成年龄为中元古代,非前人认为的太古代。本区与东部的the Rauer Group具有不同时代的基底岩石。2:对本区变泥质岩石进行了地球化学研究,变泥质岩石含有火山碎屑物质,揭示其不稳定的环境,可能为活动大陆边缘或被动大陆边缘构造环境。3:对富硼岩系进行了地球化学和硼的同位素研究,提出其可能形成在非海相蒸发盐环境。4:对本区超镁铁质麻粒岩进行了地球化学研究,超镁铁质麻粒岩具有其高Mg#(>0.7),高Ni(>400-500ppm),高Cr(>1000ppm)和SiO2含量小于52%的地球化学特征,全岩Sm-Nd分析,其模式年龄为2.0-2.1Ga,当T=2.0Ga时,其εNd为(+2.34~+5.01),可能表明其为亏损地幔和地壳物质混合来源的特征。5:应用单颗粒锆石Pb-Pb蒸发技术、SHRIMPⅡ技术、39Ar-40Ar及Sm-Nd方法对“基底”镁铁质-长英质复合片麻岩、夕线-石榴花岗片麻岩、斜长石英岩进行了同位素年代学研究,揭示研究区“基底”岩石形成年龄为中元古代,非前人认为的太古代。夕线-石榴花岗片麻岩和斜长石英岩锆石U-Pb的SHRIMP年龄研究标明,残留最老的锆石年龄为1769±28Ma,反映其物源时代为早元古代;主体残留锆石结晶年龄1072±43Ma;变质锆石年龄950-990Ma,为早期麻粒岩相变质作用年龄;泛非期(494~584Ma)麻粒岩相变质事件也有记录。镁铁质-长英质复合片麻岩和变沉积岩Nd的模式年龄表明,二者的Nd模式年龄几乎没有差别。因此,从夕线-石榴花岗片麻岩和斜长石英岩这些盖层序列岩石的锆石同位素年代学可以看出“基底”镁铁质-长英质复合片麻岩与“盖层”序列的划分不存在,镁铁质-长英质复合片麻岩与变沉积岩实为一套火山沉积岩系。区内“基底”与“盖层”的划分不正确,镁铁质-长英质复合片麻岩与变沉积岩实为一套火山沉积岩系,二者同时经历了~990-950Ma和~600-500Ma两期麻粒岩相变质作用。6:对Grovnes半岛的紫苏斜长花岗岩锆石SHRIMP U-Pb分析,认为紫苏斜长花岗岩的侵入活动发生在约990Ma,为早期格林威尔热事件同构造侵入岩石,并经历了后期542Ma的泛非构造变质热事件。7:对Dalkoy岛花岗岩进行的锆石SHRIMP U-Pb分析、40Ar-39Ar同位素年代学认为非造山的Dalkoy岛花岗岩的热年代学资料制约了本区泛非期岩浆活动的最晚年龄。锆石U-Pb结晶年龄~501Ma,40Ar-39Ar冷却年龄~486Ma,其冷却速度的快速变化,反映了~500Ma本区发生了重要的造山后构造抬升事件。依据磷灰石裂变径迹的平均径迹年龄分析资料,认为~205Ma时,本区剥露还可能与~205Ma时Lambert Graben的伸展作用有关。8:综合拉斯曼丘陵及邻区岩石组合、变质变形和岩浆活动、同位素年代学等新资料,建立了拉斯曼丘陵及邻区的地质演化年代格架9:对麻粒岩相变质环境中锆石的不同区域(如锆石颗粒的核和增生边)进行锆石原位U-Pb测年和锆石原位稀土元素分析,研究其锆石形成期间的变质条件信息。10:对拉斯曼丘陵及其邻区高级变质岩进行的同位素年代学研究,同时结合区域地质资料,识别出东南极拉斯曼丘陵、北查尔王子山-莫森海岸-瑞纳杂岩及其邻区和印度东高止地的990-900Ma造山作用。拉斯曼丘陵-北查尔王子山-莫森海岸-瑞纳杂岩-东高止地的造山作用的时间不同于与东冈瓦纳和罗迪尼亚形成有关的中-新元古变质带地块-Albany-Fraser带、Windmill Islands和Bunger丘陵、Maud省、Namaqua-Natal省。它们之间被Lutzow-Holm Bay和普里兹湾地区的泛非造山带分离。这些地块有可能在泛非造山作用(c.600-500Ma)期间增生在一起。