直接液体燃料电池Pd基阳极催化剂的制备及性能研究

来源 :青岛大学 | 被引量 : 0次 | 上传用户:wq123sd
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
直接液体燃料电池(DLFCs)具有启动速度快、工作温度低、能量密度高,燃料贮存、运输方便的特点,在电源以及电动汽车等方面有巨大的发展应用潜力。然而,DLFCs阳极催化剂如钯(Pd)的活性有限、稳定性差难以满足实际应用需求。因此,构建新型高活性和高稳定性的阳极催化剂具有重要的研究价值。材料的表面结构与催化剂的电催化性能密切相关。近年来,纳米尺度上的形貌控制备受关注。超薄二维纳米片具有独特的电子性能和大比表面积所提供的高比例活性位点,有助于提高电氧化峰电流密度。由二维纳米片组装成的三维超薄纳米材料,一般具有多孔结构,能提供额外的活性位点,其不仅能保持二维结构的高比表面积,而且具有较高的电化学和结构稳定性。本论文分别制备了层状PdW纳米片组装体(L-PdW NAs)、PdIr纳米片(PdIr NSs)和Pd纳米晶组装体(Pd NAs),并对其形貌、电催化性能和催化机理进行了分析和研究。其主要内容如下:(1)以一氧化碳(CO)作为结构导向剂和还原剂制备了三维L-PdW NAs。与Pd纳米片(Pd NSs)和商业化Pd/C相比之下,其对乙醇氧化反应和甲醇氧化反应展现出更高的活性和稳定性。研究发现,合成体系中六羰基钨(W(CO)6)是形成层状纳米片结构的关键。催化性能提升的原因认为是引入的W与新型层状纳米片组装结构的协同效应和金属Pd与W之间共同的双功能效应。(2)以CO作为结构导向剂和还原剂,抗坏血酸作为共还原剂制备了PdIr NSs催化剂材料,展现出优异的甲醇和甲酸氧化性能。PdIr NSs甲醇氧化的质量活性分别是Pd NSs和商业化Pd/C的1.26倍和2.32倍,甲酸氧化的质量活性分别是Pd NSs和商业化Pd/C的1.48倍和2.65倍。PdIr NSs的催化性能提升的原因可能是引入的Ir与Pd之间的电子效应及Pd与Ir之间的双功能效应。(3)采用Zn/H2O体系下的电沉积法制备了Pd NAs,这种方法快速、简便、环保。Pd NAs的甲酸氧化峰电流密度是商业化Pd/C的3倍左右,电化学活性表面积是后者的2倍左右。并且该催化剂甲酸氧化的起始电位为-0.154 V,比近年来报导的大多数催化剂都要低,展现出较快的电极过程动力学。
其他文献
非编码RNA(non-coding RNA,nc RNA)在转录调控中起着多方面的作用,并且是免疫功能的重要调节因子。目前关于鱼类非编码RNA在免疫调控中的研究较少。外周血单核细胞参与鱼的免疫反应,并有助于抵御病原菌感染。壳寡糖可以改善细胞和体液免疫力,从而增强鱼类的抗病能力。本论文研究以半滑舌鳎为实验对象,开展了外周血白膜层细胞的全转录组测序,通过生物信息学分析,鉴定了差异表达的lncRNA/m
碳材料具有微结构可调、缺陷可设计等优势,而杂原子掺杂工程对于调控碳材料的电导率、结构缺陷和储能性能意义重大。基于此,本文设计了硼、氮掺杂的分级多孔碳(HPC),系统研究其在钠离子、钾离子电池中的应用。本文分为以下两部分:(1)以纤维素为碳源,以氨水和硼酸作为氮和硼的掺杂源,采用喷雾干燥-高温碳化-化学刻蚀的步骤,设计合成了富氮(N@HPC)和硼氮共掺杂(B@N@HPC)的分级多孔碳。系统研究了硼掺
当前,世界上的发达国家和一些发展中国家都已进入老龄化社会,中国也未能避开老龄化这一趋势,也在不断地快速加深老龄化的程度。在这些国家中,中国的老龄化产品发展较为缓慢,不少老龄化产品仍存在粗制滥造甚至短缺、空白的现状。面对老年人这个特殊的用户群体,也决定了其对于产品设计的特殊需求,因此如何使老龄化产品能真正满足老年人的实际需求便成为了当下急需解决的课题。涉及老年人衣、食、住、行、用的产品都将深刻影响着
燃料电池领域对于环境保护,可持续能源的发展具有重要意义。以肼作为燃料电池原料具有很多优点,比如易于运输和储存、理论电动势高等,直接肼燃料电池中肼的电氧化是必不可少的,但目前广泛应用的大多为贵金属催化剂,高昂的价格和有限的储存量严重阻碍了其大规模应用,因此开发活性高且价格低廉的催化剂成为研究热点。受过渡金属硫化物在肼氧化反应中的优异性能启发,首先通过密度泛函理论计算比较了Fe S2和Fe3S4的催化
混合超级电容器结合了电池和双电层电容器的双重优势,具有较高的功率密度和能量密度以及良好的电化学稳定性等特点,近年来受到越来越多地研究。然而,由于电池型材料迟缓的离子扩散和较低的结构稳定性限制了其电化学性能,因此提高电池型电极材料的性能是发展高性能混合超级电容器的重要手段。基于此,本文通过对电极材料结构以及复合方法进行调控达到优化电极材料/电解液界面的反应活性的目的,从而提高混合超级电容器的性能。具
随着社会的快速发展,能源需求量不断增加,太阳能作为储存量丰富的清洁能源引起人们的广泛关注。太阳能电池是把太阳能转化为电能最直接的方式,其中,有机太阳能电池(OSCs)以原材料丰富、环境友好、制备工艺简单且在制备大面积、柔性、半透明器件中具有独特的优势而被广泛研究。新材料的合成以及制备工艺的成熟带动着有机光伏器件性能实现飞跃,特别是近年来非富勒烯受体材料由于其较强的吸收、易于调控的能级和形貌等优势得
第Ⅳ A族和第Ⅴ A族金属或其合金可以作为锂离子电池和钠离子电池的负极材料,例如Sn,Bi基的合金,具有较高的理论容量,被认为是理想的锂、钠离子电池负极材料。但是这些合金材料在反应过程中体积变化大(约300%),易引起电极材料粉碎脱落,导致电化学性能较差,从而限制了合金材料在锂、钠离子电池中的应用。因此,我们设计合成了系列新型锡、铋基合金材料,以抑制其体积膨胀,改善其电化学性能。采用液态钾钠合金为
燃料电池(Fuel Cell)是一种新型电化学电池,其发电方式高效无污染,被认为是能源未来的发展趋势。其中,固体氧化物燃料电池(SOFC)以其全固态结构和不使用贵金属作催化剂的优势受到世界各国的重视。目前SOFC发展的最大阻碍是运行温度过高,这会导致启动缓慢、材料老化、界面扩散、性能退化等一系列问题,所以推动运行温度中低温化是电池发展的当务之急。质子导体氧化物电解质替代氧离子导电电解质,使工作温度
随着科技的发展,人类对于能源的需求日益迫切,然而,石油、煤炭等不可再生资源的储量有限,因此发展新的可再生能源以及可储存和转换能源的储能装置的需求也越来越大。超级电容器是近几年来研究热点比较高的储能装置,它具有许多传统电池不可比拟的优点,比如功率密度高、充电时间短、循环稳定性好和安全性高等。然而相对于电池而言,超级电容器的能量密度较低,探索提高超级电容器能量密度至关重要。根据能量密度计算公式,提高电
多相感应电动机具有高效率、高可靠性、易于实现低压大功率驱动等特点,被广泛地应用于舰船电力推动系统。由于大容量舰船变速系统惯性较大,对系统的快速响应要求较低,而开环控制系统设计简单、控制方便,故适用于多相感应推进电动机起动与调速。本文以大容量舰船多相感应推进电动机为研究目标,采用小容量九相感应电动机样机为具体对象,对多相感应电动机的开环控制调速系统进行研究,具有重要的理论意义与实用价值。针对3套三相