【摘 要】
:
燃料电池(Fuel Cell)是一种直接将储存在反应物中的化学能高效、无污染的转化为可直接利用的电能的能量转换装置。其中,质子交换膜燃料由于其电池噪声小、操作温度低、能量密度高、启动速度快、响应迅速等的优点是目前使用最广泛的一种。燃料电池催化层由碳负载的铂颗粒、离子和催化剂孔隙组成,决定着电池性能并且是燃料电池高成本的主要原因。在实际运行中,燃料电池会经历频繁的启动/停止开关,在此过程中电池的温度
论文部分内容阅读
燃料电池(Fuel Cell)是一种直接将储存在反应物中的化学能高效、无污染的转化为可直接利用的电能的能量转换装置。其中,质子交换膜燃料由于其电池噪声小、操作温度低、能量密度高、启动速度快、响应迅速等的优点是目前使用最广泛的一种。燃料电池催化层由碳负载的铂颗粒、离子和催化剂孔隙组成,决定着电池性能并且是燃料电池高成本的主要原因。在实际运行中,燃料电池会经历频繁的启动/停止开关,在此过程中电池的温度,气体湿度和局部气体组成会不断变化从而加速催化层的裂纹扩展。因此,研究催化层的微观结构在动态操作条件的变
其他文献
风能是一种储量巨大、用之不竭的清洁能源,风力机是一种将风能转换为机械能的装置,其性能好坏直接影响着对风能的利用率。垂直轴风力机可以接收各个方向的来流,无需对风装置,具有受力均匀、成本较为低廉、噪声小、安装维护方便等优点,但是在低风速下运转比较困难、效率较低,这两个问题阻碍了垂直轴风力机的进一步发展,基于此,本文设计了一种变桨距机构用以改善直线翼升力型垂直轴风力机的气动性能。结合垂直轴风力机的国内外
目前,国内已有废旧动力电池(以下简称贫液电池)智能化拆解相关的工艺研究,但由于电池摆放状态的随机性,会增大拆解回收工艺的难度。为方便拆解工艺的进行,需要将贫液电池整理进行单一化整理。若采用人工搬运,蓄电池硫酸液和重金属铅会对人体造成极大危害,且劳动成本高、效率低。在电池的整理工艺领域,国内外鲜有研究。为解决上述问题,本文对绿色高效且能适应多种类型贫液电池的整理工艺进行研究,设计了基于视觉信息的整理
新型动力汽车与储能系统的发展对锂离子电池的技术指标提出了更高的要求。硅材料以其高理论容量、低反应电位、丰富的储量成为最具应用前景的负极材料,然而大体积效应和低电导率是其规模化应用的阻碍,通过设计制备纳米复合结构、匹配电解液等尝试,硅基负极材料的研究已经取得了诸多进展。然而,硅纳米复合材料的低成本高效制备、反应机理及失效机制等均需要进一步探索。本文在综述前人研究基础上,以零维硅纳米材料为研究对象,从
近年来,随着电动汽车(Electric Vehicle,EV)的快速普及以及信息网络技术在电力系统和交通系统中的广泛应用,电力系统、交通系统和信息系统之间的耦合日益紧密。电动汽车入网状态、信息系统可靠性等不确定因素,会对电力系统的可靠运行产生影响,如何有效计及信息系统和交通系统对电力系统可靠性的影响、评估系统可靠性成为了当前的挑战性问题。为此,本文提出了考虑电动汽车需求响应的配电网信息物理系统(C
风力发电机的空气动力学性能是决定风力机安全与效率的最重要因素之一。但由于影响风力机气动性能参数众多,更加高效精确地模拟风力机的气动特性一直是风力机研究的重要发展方向。本研究采用浸入边界法对风力机的不同翼型、单级风力机和两级风力机的气动力学进行了一系列的研究。本文所做的主要工作及有价值的结论如下:(1)浸入边界法可以精确地模拟翼型的升力,而对于阻力的模拟,相对网格具有严格的一阶精度。并提出一种简单有
太阳能、风能等可再生能源因其随机性和波动性给建筑可再生能源系统供能侧与负荷侧的匹配性造成很大的影响。作为解决可再生能源系统供需匹配问题的一种重要技术,负荷预测所起的作用日益突出。为了保证能源系统在运行时的安全、稳定和高效,如何实现快速与准确的预测负荷备受关注并被广泛研究。在传统的负荷预测模型中,主要考虑环境参数及历史负荷数据,对于室内人员与建筑环境的相互作用关注不足。而室内人员行为是影响建筑负荷的
气体扩散层(gas diffusion layer, GDL)中的气液两相流对质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)的水管理起着至关重要的作用。实际过程中,燃料电池需要一定的组装压力实现气体的密封以及相关部件的紧密接触,气体扩散层在组装压力作用下会发生结构变形,对其内部两相流动和燃料电池性能产生重要的影响。 本文采用随机模型重建了
现如今,全球可持续性发展所面临的主要问题在于资源短缺与环境污染。相比于传统的燃油汽车,电动汽车因具备零排放和高能量利用效率双重优势,成为全球汽车行业转型的主要方向。动力电池作为电动汽车的关键部件之一,其性能的优劣直接决定了电动汽车的性能和安全性。在各类动力电池中,锂离子电池具有较高的性能比,成为目前最具有发展前景的电动汽车动力源之一。但是在充放电循环过程中,锂离子电池内部会产生大量热量,而过热、燃
在能源危机持续蔓延的今天,如果能对众多领域内产生的巨额低温余热能进行回收利用,将对节能减排做出巨大贡献。目前在低温余热回收领域,热再生氨基液流电池能够很好地满足热电转化过程中高功率密度,可扩展性以及低成本的要求,具有较好的应用前景。但热再生氨基液流电池研究还不成熟,其功率密度还有待提高。综合目前的研究进展,从电池流道和内部自放电的角度研究,具有较大的提升空间。因此本文通过电池流道和内部自放电现象的