论文部分内容阅读
在实际优化过程中,许多优化问题都需要同时考虑多个目标,并且这些目标往往是相互冲突的,因此,多目标优化受到更多的关注。进化算法是模拟生物自然进化的全局智能搜索算法,广泛地应用于求解高度复杂的非线性问题。研究者们针对不同的应用问题,提出了不同的多目标进化算法,比如:NSGA-II、ε-MOEA等,它们都能很好地处理多目标优化问题。但是,许多文献只是考虑两个或者三个目标的低维问题,而在实际中,往往包括的目标数非常大(4维或者更多)。当目标数量超过3维时,分析Pareto面比较困难。甚至有研究表明,基于Pareto优化的MOEA在高维情况下不易找到好的Pareto面,原因之一就是非支配解的比率随目标维数增加迅速增长。这意味着,许多算法在选择过程中都是随机的。目前处理高维问题有两种方法:松驰Pareto支配关系的方法和目标减少算法。本文针对第二种方法作了一些比较研究,主要工作包括以下三个方面。第一、分析比较了目前已经提出的三种目标减少算法。本文首先对三种同类算法作一个简介,然后分析了这些算法的性能,并与本文将提出的新算法进行对比,从另一面验证本文算法的可行性。第二、提出了基于最小二乘法的目标减少算法,并通过实验证明它的可行性。本文将从决策者角度出发提出一个新的目标减少算法,该算法采用最小二乘法将目标空间中每个目标函数拟合为多条直线段,然后两两比较各直线段的斜率,确定最冗余目标对,并将冗余目标从目标集中删除。在算法设计的每一步,本文将详细对它介绍与分析,得出其时间复杂度。另外,通过大量的比较实验证明,本文的算法是一种有效的算法。第三、提出了两种目标减少算法的评价方法。即:(1)在目标减少前后,用支配关系改变的比率来衡量它的优劣; (2)将目标函数拟合为多条直线段,用空间分布相似程度来评价它的好坏。考虑到目标减少算法目前暂时缺少专门的评价方法这个问题,本文提出了上述两种评价方法,评价的数值结果与图的直观反映结合验证评价方法的可行性;并且,本文已将评价方法(1)用于评价各目标减少算法。最后,通过与已有评价方法进行比较,实验结果表明本文提出的两种方法能准确地评价目标减少算法。另外,本文还改进了单目标遗传算法求解一些实际问题:如旅行商问题,数值优化问题等。