论文部分内容阅读
化学发光(CL)是指在没有任何光、电、热的作用下,只是吸收化学反应放出的化学能而激发,产生光的辐射的发光现象。化学发光检测系统光路简单,无需外加光源,不存在荧光分析中瑞利散射和拉曼散射以及溶剂荧光杂质产生的背景信号,具有较高的信噪比,可获得与激光诱导荧光相媲美的灵敏度。化学发光反应多是快速的动力学反应,较易受环境因素的影响,因此反应过程难于控制,重现性和选择性较差,使其在定量分析中受到一定限制。流动注射分析技术(FIA)是一种在非平衡状态下,溶液自动处理及分析技术,将FIA与CL联用,在很大程度上克服了化学发光分析重现性差、操作费时、不便于实现自动化等缺点,从而使化学发光作为一种灵敏高效的痕量分析方法在分析化学领域得到了迅速发展。纳米粒子因其独特的化学和物理性质,为生物医学研究提供了新的研究途径,同时也推动了化学和生物传感器的应用。纳米粒子独特性质与生物分子杂交反应的特异性和流动注射化学发光的高灵敏性、重现性相结合,使其应用范围更广泛。本论文基于化学发光的高灵敏度检测特性结合流动注射技术研究化学发光在药物、食品有益成分的测定以及结合纳米粒子分离、标记探索了化学发光在传感器方面的应用。论文主要研究内容如下:第一章:绪论简单介绍了化学发光的原理、几种常用的反应体系、化学发光在蛋白质、DNA片断分析、食品分析以及药物分析中的应用,最后介绍了化学发光法与流动注射技术、高效分离技术以及微全分析技术的联用及其应用,最后阐述了本论文的目的和意义。第二章:流动注射-化学发光法选择性测定复方滴鼻液中的磺胺嘧啶本文基于在酸性条件下磺胺嘧啶、KMnO4、HCHO的化学发光反应建立了一种简单灵敏的流动注射-化学发光分析方法选择性测定了复方滴鼻液中磺胺嘧啶。在所选择的最佳实验条件下,磺胺嘧啶的浓度与化学发光强度在8.0×10-7到2.0×10-4mol/L范围内呈线性关系,按照IUPAC组织的规定,以空白值的标准偏差的3倍,计算方法的检测限为:2.0×10-7mol/L(3σ)。对5.0×10-5mol/L的磺胺嘧啶标准溶液平行测定11次,计算测量的相对标准偏差为2.53%。共存的盐酸麻黄碱等不干扰测定,因此本方法成功地用于处方药复方滴鼻液中磺胺嘧啶的测定,结果令人满意。第三章:基于固相萃取的流动注射化学发光测定红酒中的白藜芦醇本文基于酸性条件下KMnO4、HCHO和白藜芦醇之间的化学发光反应建立了一种灵敏的测定红酒中的白藜芦醇的流动注射-化学发光法。红酒在分析前用C18固相萃取小柱处理。在优化条件下,相对化学发光强度与白藜芦醇的浓度在1.32×10-8到1.32×10-5mol/L范围内呈现良好的线性关系。根据IUPAC规定,以空白值的标准偏差的3倍为标准,计算方法的检测限为3.30×10-9mol/L,平行测定11次得到的相对标准偏差为3.8%。将该法成功地应用于红酒中白藜芦醇的含量测定,同时进行标准加入回收试验,结果令人满意。并对化学发光反应机理做了简单探讨。第四章:基于磁性纳米粒子的流动注射化学发光DNA传感器.本文拟建立了一种用于DNA杂交检测的光学传感器。该方法涉及到纳米磁性粒子用于单链DNA的固定、纳米CuS颗粒用于DNA标记以及快速灵敏的流动注射化学发光用于定量检测。磁性纳米粒子是一种新型的固相载体,具有易于制备,表面改性等优点。在EDAC存在下,靶寡聚核苷酸通过5’端的氨基共价结合到羧基化的磁性纳米粒子表面。固定在磁性纳米粒子表面的目标DNA与溶液中硫化铜纳米粒子标记的寡聚核苷酸探针杂交后,然后将含有dsDNA/CuS的磁性纳米粒子溶解于硝酸溶液中,最后在流动注射化学发光仪上通过释放出来的铜离子对碱性luminol-H2O2的催化作用,间接的检测DNA杂交。该方法将有效的磁分离和化学发光法的高灵敏度相结合,为DNA杂交的测定提供了大有希望的应用前景,为进一步的实验奠定了基础。