基于生成对抗网络的医学图像数据增强方法研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:nothingme
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
小规模数据集和有限的带标签样本是医学成像领域的主要挑战。训练成功的深度学习算法需要大量的有标签数据作为支撑,但由于医学图像数据难以获取且标签注释需要昂贵的人工成本,这大大限制了其在医学领域中的应用。在医学成像任务中,高级放射科医师会根据他们的专业领域知识制作病变标签,但是医学图像的大多注释都很耗时。当数据匮乏的时候,神经网络极易出现过拟合问题,这种现象在小规模数据集上尤为明显。传统的图像数据增强方法在缓解过拟合问题上有一定的效果,但是相比于原始数据,合成数据带来的性能提升还是十分有限。随着GAN模型被提出,研究者们开始将注意力转向使用GANs系列模型生成与原始数据集相似的图像来进行数据增强。虽然精心设计的GAN变体模型可以生成与原始数据同等质量的图像,但是仍然无法避免其固有的无法生成指定标签图像、合成图像中包含噪声数据等问题。针对这些问题,本文基于甲状腺超声图像数据集在数据增强方法方面进行一系列的创新型研究,主要研究成果如下:1、现有的研究几乎完全基于数据驱动的方式学习模型参数和提取深度特征,这可能使得模型在小训练样本等真实条件下的精度远低于人类性能。针对这一现状,本文提出一种基于知识的医学图像数据增强方法,该方法设计了一种生成对抗网络模型KACGAN,将放射科医师长期以来总结形成的专家经验和知识融入模型,深度挖掘和分析医疗文本的信息,整合影像和临床数据,多维度的综合分析以生成高质量的超声图像数据。值得注意的是,本文从影像学报告的标准化术语中提取专家领域知识而不是从超声图像中提取,且设计了异模态相似度损失以保证领域知识特征的权威性和模型训练的稳定性。本文在甲状腺病变分类任务中验证了该数据增强方法的性能,提出的KACGAN模型准确度为91.46%,敏感性为90.63%,特异性为92.65%,AUC为95.32%,优于目前的甲状腺结节分类方法。实验结果表明该模型具有较好的鲁棒性和泛化性。2、现有的研究可以基于GANs生成高视觉质量的合成图像,但是很少考虑如何保证合成图像的特征质量或控制图像合成后的增强步骤。没有质量保证的合成图像可能会不利地改变数据分布并降低模型性能。针对这一现状,本文提出一种基于特征的选择性数据筛选框架,通过筛除掉噪声样本以防止其影响KACGAN模型的分类和泛化能力。本文将原始数据集放入Res Net18模型中进行训练得到特征提取模型,然后对生成数据集进行特征提取以筛选可以被确定良恶性的合成图像,其次选择在特征空间中充分接近真实图像类质心的合成图像,尽可能的剔除掉噪声数据。经过设置实验对照组进行验证,结果证明该选择性数据筛选框架可以进一步提高数据集质量和模型分类性能。
其他文献
本课题是山西省研究生联合培养基地人才培养项目(2018JD09)“无人值守工作面液压支架电液控制系统的研制”的重要组成部分,它是针对井下无人值守工作面在实验室和监控中心如何再现的问题而提出的。课题以煤矿井下综采工作面液压支架电液控制系统为研究对象,将虚拟仿真技术应用于液压支架监控平台,基于实验室现有的无人值守工作面模拟实验系统,以智能化综采工作面液压支架动态仿真平台为目标,开发出一套液压支架远程控
挖掘机广泛应用于各种施工场合,在工程机械中占有十分重要的地位。挖掘机作业环境复杂多变,常伴有噪音、粉尘,一些场合甚至存在塌方、辐射等危险,挖掘机自主智能化作业已成为未来发展趋势。工作装置姿态信息是智能控制系统的重要参数,实时精准地获取姿态信息对自主智能化作业起着至关重要的作用。在挖掘机工作装置姿态测量方面,大部分是以电位计、关节角度编码器等接触式传感器来实现。近年来一些研究人员针对姿态测量中接触式
传统的肺癌诊断主要通过人工读片的方式,找到肺结节所在的位置并判断其良恶性,这对于医师的经验有着较高的要求,同时极大的工作量很有可能造成诊断疲劳,甚至造成漏诊或误诊,耽误患者的最佳治疗时期。计算机辅助诊断技术的出现,实现了肺结节的自动诊断,减轻了医生的工作量,也在一定程度上缓解了不同地区医疗水平差异的问题。但目前与肺癌相关的计算机辅助诊断技术大多数针对独立时期的肺部病灶影像,通常是对肺部影像进行肺结
互联网上存在海量形式异构的用户生成内容,包括公开点评网站、电子交易平台中用户针对某些服务或产品所发表的评价。通常,用户会通过多种形式分享他的消费体验,比如上传照片等图像数据,发表文字评论,在平台限定范围内给出评分。随着个性化推荐、用户画像、文本挖掘分析等研究的不断深入,这些体量庞大的用户反馈数据越来越成为其不可或缺的研究支撑。某种程度上,在线评论会影响甚至引导其他新用户的购物决策,从而与品牌信誉、
随着工业生产规模的不断扩大,工业生产过程变得愈发复杂,对于系统中一些关键参数的测量变得更为重要。传统的测量技术主要基于新型的过程测量仪表,以硬件形式实现过程参数的在线测量。但受限于过程机理、物理环境、传感器和仪器硬件特性等因素的影响,工业生产过程的某些关键参数难以通过硬件设备直接在线测量。软测量技术采用间接测量的思路,利用过程中易获取到的辅助数据信息建立相应的数学模型,实现对难测主导变量的估计。传
近年来,随着大数据相关技术的发展,不光数据维数在增加,计算量也呈指数倍增长。特征选择是解决该问题的方法之一。根据数据的来源,特征选择分为单视图特征选择与多视图特征选择,根据分类模型中是否使用标签,特征选择分为监督、半监督、无监督三种类型。由于多视图数据能够发挥各个视图的优势,因此收到了广泛关注。而有监督特征选择方法因标签的获取成本很高,因此无监督特征选择方法受到了广泛关注。但是目前的无监督多视图特
音频水印算法将表示特定含义的信息(音频创作者的相关信息、音频文件的下载及传播记录)嵌入到音频文件中,不影响原始音频文件自身的品质;在发生版权纠纷的情况下,能够将嵌入音频中的水印信息正确地提取出来,即使嵌入水印后的音频受到信号处理攻击,水印提取的正确性也不会受到影响。在音频中嵌入水印可以实现音频版权的追踪,它的有效性不仅取决于嵌入水印后算法的不可感知性,还取决于提取时的鲁棒性。两者之间是相互制衡的,
随着移动互联网技术的不断发展,网络结构及其拓扑日益复杂,数据规模爆炸式扩张,使得如何迅速而准确地从海量信息中搜集和获取更多有价值的数据及其特征已经成为当前关注的热点。个性化推荐算法就是一种通过对用户历史活动资料进行分析,挖掘用户潜在偏好信息的有效方法。协同过滤推荐算法作为经典的个性化推荐算法,可以准确发现其喜好与倾向,并对其倾向的商品进行筛选、预测与推荐。然而,面对数据规模快速增长,以及日益复杂的
滚磨光整加工是一种广泛应用的提高零件表面质量的机械加工技术,加工时将零件、滚抛磨块、水和磨液等放入滚筒中,通过滚筒转动使滚抛磨块和零件产生碰撞、摩擦和滚压等作用力,从而去除零件表面的毛刺、划痕,达到提高零件表面光亮度和表面质量的目的。滚抛磨块是滚磨光整加工中的研磨介质,对零件加工效果有重要影响。烧结型球状滚抛磨块是滚磨光整加工中应用最为广泛的一种磨块。但目前国内磨块生产厂家由于生产工艺、设备等因素
脑网络分析已广泛应用于神经影像领域的研究。传统功能连接网络大多是基于两两相关构建大脑区域之间的二阶关系,为有效构建大脑区域之间的高阶交互关系,基于超网络的脑功能构建方法被提出。超网络是基于超图概念下的复杂网络,超网络中的超边可用来表示多个脑区之间的交互作用。超网络是根据静息态功能磁共振成像时间序列通过稀疏线性回归模型构建。现有的稀疏线性回归模型大多是采用套索的方法解决的。虽然套索方法应用广泛,但也