【摘 要】
:
光纤传感器具有电磁干扰小、体积小、重量轻、测量距离远等优点,在航空航天工业、遥感领域、智能物联网和测量仪器中实现了广泛应用。本文提出了基于Lyot滤波与模式干涉的光纤传感结构。从理论建立、模型计算和实验验证的角度对新型光纤扭转结构的扭转传感性能进行了研究,并分析了其他物理参量对新型传感器性能的影响,为光纤扭转传感器的设计、制造和应用提供了新的思路。本文提出了一种基于Lyot滤波器的新型扭转传感器,
论文部分内容阅读
光纤传感器具有电磁干扰小、体积小、重量轻、测量距离远等优点,在航空航天工业、遥感领域、智能物联网和测量仪器中实现了广泛应用。本文提出了基于Lyot滤波与模式干涉的光纤传感结构。从理论建立、模型计算和实验验证的角度对新型光纤扭转结构的扭转传感性能进行了研究,并分析了其他物理参量对新型传感器性能的影响,为光纤扭转传感器的设计、制造和应用提供了新的思路。本文提出了一种基于Lyot滤波器的新型扭转传感器,该传感器采用高双折射光纤作为偏振分离介质,输出偏振态的旋转率等于施加在高双折射光纤上的扭转率,灵敏度高达90.072 d B/rad。另一方面,基于偏振干涉在特定位置的相位突变,波长灵敏度获得了极大的提高,达到了15.477 nm/rad。在一个周期内,波长解调与强度解调的测量范围互不重叠,进一步扩大了传感器的有效测量范围,有效解决了高灵敏度传感器扭转角度过大时的光谱变化饱和问题。本文从理论上设计并实验验证了一种基于悬芯光纤与Lyot滤波的新型扭转传感器,同时实现了偏振干涉与模式干涉。通过在两个光纤内置偏振器之间插入一段扭曲的悬芯光纤,实验制作了悬芯光纤传感结构,并在光纤两端引入熔接塌陷以加强模式失配,干涉的主要分量为两个正交偏振的纤芯基模和悬芯模式。基于悬芯光纤的偏振选择性耦合,该传感器实现了偏振干涉和模式干涉的相互作用,并获得了更高的灵敏度。该传感器仅通过调节入射光的偏振角度即可实现干涉共振增强和游标效应,灵敏度高达171.97 d B/rad与57.32 nm/rad。并且该结构游标效应的实现无需复杂的串联结构或并联结构,提高了光纤结构的机械强度。此外,该传感器能够实现对扭转的矢量测量,并且轴向应变的串扰极低,仅为7.47×10-7 rad/με。
其他文献
目标识别是根据目标成像得到的特征信息来估算目标的大小、形状、重量和表面层的物理特性参数,最后在分类器中进行分类识别的一种技术。但是以前的目标识别技术只能通过回波信号的强度信息对目标形状进行识别,无法给出目标的多维信息,使得识别容易出现大的识别误差,且高斯光束无法实现目标表面粗糙度识别。本论文提出基于粗糙表面对涡旋光束漫反射的特性实现对目标表面粗糙度的识别,涡旋光束不同于高斯光束,其携带轨道角动量,
量子计算机是遵循量子力学原理,对量子系统进行一系列特定操作的新型计算系统,其拥有强大的信息处理能力。“量子霸权”表示量子计算机对某些问题的求解能力远远优于经典计算机。在2019年,Google公司架设出一台53量子比特的量子计算机,宣布实现“量子霸权”。这意味着量子计算机从理论走向实践,是量子计算发展历程中的重要里程碑。Google公司实现量子霸权的理论基础是“随机量子电路采样”实验。随机量子电路
声操控利用声波和目标物之间动量交换产生的力学效应实现对微粒运动状态的操控。因声波良好的穿透性和生物相容性,声操控在生物领域获得广泛应用,尤其在生物体内操控方面,但目前在生物体内操控存在着受环境影响大、迭代计算繁杂、操控数量有限等难题。而在2020年Michael等在光学领域用散射矩阵法实现了对复杂环境中的目标体的最优操控,该方法目前已在光学领域得到了成功的验证,因其简化的计算方法以及受复杂环境的影
耦合振子系统的同步分析是一个热点课题,它在神经系统、分布式发电、电力系统、安全通信、记忆电路及生化网络多个领域都有应用。20世纪70年代,Kuramoto提出了一种描述同步现象的数学模型,称为Kuramoto模型(KM模型),此后许多学者便沿用此模型刻画解释同步现象。经典的KM模型的振子间的耦合强度是常数,而在某些系统中,动态变化的耦合振子强度能更好地刻画实际情况,因此人们提出了多种自适应耦合强度
重整化解最早由DiPerna和Lions在研究玻尔兹曼方程时提出,其被大量应用于一些非线性椭圆,抛物型问题以及流体力学中演化问题的研究。目前与p-Laplace算子和分数阶p-Laplace算子相关的椭圆和抛物型问题已有丰富的重整化解方面的结果。另一方面,局部和非局部p-Laplace算子相混合的问题最近受到国内外学者越来越多的关注。这类问题来源于两个不同尺度的随机过程的叠加。“混合”一词在这里指
Hessian方程是二阶完全非线性偏微分方程中重要的一类.这不仅是因为它在Riemann几何,最优化和深度学习等多个不同的领域中均有出现,而且也因为大部分Hessian方程本身满足比较原理这一重要的性质,使此方程被广泛地应用于各个分支学科当中.因此,找到一种严谨且行之有效的方法去证明这类方程解的存在性问题是十分有意义的.上下解方法就是一种以比较原理为基础证明偏微分方程解存在性的十分有效的方法.本文
本文研究Cucker-Smale模型(C-S模型)的离散形式和连续形式之间的关联,证明了在Wasserstein距离下,离散Cucker-Smale模型的解依概率收敛到连续Cucker-Smale模型的解,并且给出了收敛率估计。这一结果为连续Cucker-Smale模型提供了一种概率解释,并为用连续模型对大数量粒子运动状态的模拟提供了一种概率意义下的误差估计。具体来说,对于一类正则的C-S模型,本
q-形变W(2,2)代数是一个以{Ln,Wn}n∈Z为基底的Hom-李代数,记作Wq.本文主要研究Wq的2阶上同调群与双导子的结构.首先,将李代数的双导子的概念推广到Hom-李代数上,并进一步讨论Hom-李代数上的双导子与线性交换映射之间的关系.接着,研究Wq的取值在伴随模上的2阶上同调群.定义Ln与Wn的次数为n,可以将Wq进行Z-分次,从而Wq的2阶上同调群H~2(Wq,Wq)有一个自然的Z-
本文研究了一类目标函数具有分块结构的复合优化问题。针对该问题,块坐标方法是一类高效的求解方法,其核心是每次迭代过程中根据选择策略仅对部分块坐标进行更新,而其余坐标保持不变。此方法通过有效地计算部分块坐标而不需要进行完全的操作,显著提高了相应算法的计算性能。基于块坐标方法,本文提出了块坐标Bregman 近端梯度法(简称为BCBPG)来最小化两个非凸函数的和,其中一个函数是块坐标变量分离且相对光滑的
近些年来,分数阶问题一直是偏微分方程领域研究的热点与前沿问题。在分数阶问题中,起主要作用的是分数阶Laplace算子或更一般的非局部积分算子。分数阶算子具有非局部特性,因此为描述具有遗传和记忆性质的材料等提供了极有价值的研究方法。对于分数阶问题,解的存在性、唯一性以及正则性目前已有了大量的研究。本文在分数阶Sobolev空间的理论框架下,研究了如下一类具超临界增长的分数阶Schrodinger方程