论文部分内容阅读
近年来,有机发光器件(OLED)技术获得了巨大发展,倒置有机发光器件能和氧化物TFT技术兼容,而顶发射有机发光器件理论上具有100%的开口率,更容易和底部的驱动电路集成,因此倒置顶发射器件成为近期的研究热点。但在制备能够用于大屏幕显示和照明的倒置顶发射白光器件时,顶发射器件中存在微腔效应,使光谱中某一波峰发生移动,增强或减弱,并使器件的角度稳定性变差。因此虽然倒置单色顶发射器件和倒置叠层顶发射器件的研究近年来取得了显著成果,但倒置白光顶发射器件却鲜有人报道,本论文最终制备了基于新型阴极修饰层的一种光谱特性稳定的倒置白光顶发射器件。倒置器件存在电子注入较差的问题,在本论文中,为了改善器件的电子注入,我们采用Ag掺杂Bphen作为阴极修饰层,将该修饰层放在器件的阴极和电子传输层中,制备了单色绿光的倒置顶发射有机发光器件。然后采用较高效率的绿光材料Ir(ppy)3掺杂进入主体CBP之中,制备了高效的单色绿光器件。通过和未加入该阴极修饰层的倒置顶发射器件对比中可以看出,在相同电压下,其电流远远高于未加入该阴极修饰层的倒置顶发射器件。并且其最高效率为76.4cd/A,是常规底发射器件的2.38倍。并且在制备该阴极修饰层时,采用了故意掺杂和非故意掺杂两种方式,故意掺杂器件非故意掺杂器件相差无几,且非故意掺杂能够简化器件的工艺。该部分证明了Ag掺杂Bphen阴极修饰层能够改善倒置器件的电子注入,为接下来制备白光器件打下了基础。在单色器件的基础上,为了进一步改善器件的电子注入,提出采用渐变掺杂的Ag掺杂Bphen阴极修饰层,掺杂比例从3:1变化到1:1。并和未渐变掺杂的阴极修饰层器件对比,可以看出渐变掺杂阴极修饰层进一步改善了器件的电子注入。然后通过改变器件的发光层位置,确定了激子生成层位置就主要位于电子传输层和发光层界面附近,进一步调整器件的发光层厚度和浓度后,获得了倒置顶发射白光器件,但该器件的光谱随电压变化,色坐标从(0.489,0.395)变化到(0.387,0.377)。因此我们将发光层中红光材料换为黄光材料,制备了白光器件,具有良好的光谱稳定性。其最高效率为21.7cd/A。并且器件光谱随角度变化也十分稳定,从0度变化到60度,其色坐标变化为(0.022,0.015)。