PECVD法制备氢化纳米晶硅薄膜及其晶化特性的研究

来源 :浙江师范大学 | 被引量 : 0次 | 上传用户:hanhan069
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
氢化纳米晶硅(hydrogenated nanocrystalline silicon, nc-Si:H)薄膜是硅的纳米晶粒镶嵌在氢化非晶硅(hydrogenated amorphous silicon, a-Si:H)网络里的一种硅纳米结构材料。它具有高电导率、宽带隙、高吸收系数、光致发光等光电特性,已经引起了学术界的广泛关注和研究。一方面,nc-Si:H薄膜材料具有量子限制效应,因此可以通过控制薄膜中的晶粒尺寸等来调节薄膜的带隙,以应用于对不同波段的光的吸收。另一方面,nc-Si:H薄膜材料具有良好的光照稳定性,无明显的光致衰退效应,有望应用于薄膜太阳能电池工业化生产中。然而,nc-Si:H薄膜材料的结构、电学等性质强烈地依赖于其所制备的工艺参数。因此,本文利用等离子体增强化学气相沉积(plasma-enhanced chemical vapor deposition, PECVD)法系统地研究了工艺参数(射频功率、氢稀释比、沉积温度、磷或硼掺杂比)对本征及掺杂nc-Si:H薄膜晶化特性、电导率及生长速率的影响。研究结果表明:(1)在一定范围内,随着射频功率的增加,本征和掺杂nc-Si:H薄膜的晶化率、晶粒大小、沉积速率及电导率都在提高,但是过高的射频功率会使得薄膜表面被大量的原子轰击,导电性下降;(2)提高氢稀释比是制备nc-Si:H薄膜最有效的方法。随着氢稀释比的增加,薄膜逐渐由非晶转变为纳米晶,而且氢稀释比越大,晶化程度越高,但是会显著降低薄膜的沉积速率;(3)在一定范围内,提高沉积温度可以提高n型和本征nc-Si:H薄膜的晶化程度和导电性,但是对p型nc-Si:H薄膜刚好相反,主要是因为掺硼的nc-Si:H薄膜在高温下更容易脱氢所致;(4)随着磷或硼掺杂比的增加,薄膜晶化程度在降低,而沉积速率在增加。在一定范围内,磷掺杂比越高,薄膜导电性越好。而硼掺杂比越高,薄膜导电性越差,且超过0.5%的硼掺杂比就会导致薄膜的非晶化。最后,选取最优的工艺参数,初步探索了nc-Si:H薄膜在p-i-n型薄膜电池上的应用,获得的最高光电转换效率为4.97%。金属诱导晶化(metal induced crystallization, AIC)也是制备纳米晶硅或硅纳米线(SiNWs)的常见方法之一,本文利用PECVD法和磁控溅射(magnetron sputtering deposition, MSD)法制备了锡诱导硅纳米线(Sn-SiNWs).通过扫描电镜拍摄的图片(SEM图)可以看出,PECVD法所制备的Sn-SiNWs的密度、均匀性都要远远高于MSD所制备的。最后,结合实验数据讨论了SiNWs的生长机制。需要指出的是这是首次利用MSD制备出Sn-SiNWs,这在纳米级传感器、存储器等微电子器件中有潜在的应用前景。另外,如何有效地控制生长取向一致的SiNWs还有待于进一步的研究。
其他文献
量子力学的发现和信息理论的产生无疑是二十世纪极其重要的两个事件,前者打开了人们认识微观世界的大门,并且在以后的几年里得到了迅速发展。现在,量子理论被广泛地应用在物理学
我们用固态反应法合成了不同淬火温度的YBa2Cu3O7-δ(YBCO)系列样品,以及稀土元素替代的RBa2Cu3O7-δ(RBCO)系列样品;利用X射线衍射(XRD)和扫描电镜(SEM)对系列样品的结构和表
本硕士论文主要研究带有量子门介观环中自旋相关电子传输的相移以及量子门对介观环器件电导振荡的调控机制。这是当前相位敏感量子输运的研究热点之一。本工作包括两个方面:
量子相干控制是在量子及量子态理论深入研究和超快光学及整形技术迅速发展的基础之上逐渐形成的一个新兴的前沿研究领域。其控制技术(光学脉冲整形技术)在相干控制化学反应、
近些年来,过度使用抗生素使得细菌等微生物的抗药性逐渐增强,甚而导致了一些抗性很强的超级细菌的出现,这使得人们希望尽快找到比传统抗生素更有效的抗菌药物。人体抵御外来病原
非线性光学材料在全光开关和光信息技术等领域存在着很大的应用前景,便捷可靠的测量方法对于研究非线性光学材料必不可少。目前已经有许多不同种类的测量方法,为了增加它们的测
显示是信息技术的重要组成部分。而OLED技术则被认为是最有可能取代液晶显示的全新技术。作为OLED技术中后起之秀的磷光器件则是近年科技界热衷的课题。针对当前磷光材料和器
本文从发展量子信息科学技术,克服常规材料和器件响应时间的限制,开辟利用电子自旋自由度的新型光电子器件的目标出发,以物质的相干性为主要研究对象,分析了瞬态非线性探测中的干
表面界面动力学粗化生长现象与许多实际的生长过程有关。基于不同的连续性动力学方程和离散生长模型,在欧几里得空间的研究取得了很好的成果。而分形理论的发展使得人们开始关
颗粒物质普遍存在于自然界中,表现出丰富的物理学性质,既有固体的性质,同时又具有液体甚至气体的性质。再加上颗粒系统本身的离散性,孤波在一维颗粒链中传播有着丰富的内容和许多