通过添加剂或第三组分处理揭示有机太阳电池活性层形貌的演变机理

来源 :南昌大学 | 被引量 : 0次 | 上传用户:juliediar
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
有机太阳电池(OSCs)由于其结构简单、质量轻、可大面积制备等优点,受到了广泛的关注。近年来,随着新型光敏活性层材料的快速发展和对活性层形貌调控的深入理解,OSCs的能量转换效率(PCE)不断取得突破。其中,活性层形貌调控对于提升器件效率至关重要。近年来,三元策略在调控有机太阳电池活性层形貌,改善器件性能方面显示出巨大的潜力,成为有机光伏领域研究的热点。迄今为止,已有相关文献报道添加剂以及第三组分给受体在调控活性层形貌方面的独特优势。本文旨在高效率体系中探究常用添加剂DIO、液晶小分子(LCSM)、星型小分子TF1对活性层形貌演变的影响,从而对形貌与器件性能之间的关系有更深的理解,对如何选择合适的第三组分以提高有机太阳电池的光电转换效率具有重要的指导意义。我们首先以非富勒烯体系PM6:IT-4F为例,结合本体异质结(BHJ)和准平面异质结(PPHJ)深入探究了添加剂1,8-二碘辛烷(DIO)对形貌调控的影响机制。根据DIO的不同添加方式制备五种基于PM6为给体,IT-4F为受体的不同器件,其中两种为BHJ活性层PM6:IT-4F与PM6:IT-4F(DIO),三种PPHJ活性层PM6/IT-4F,PM6/IT4F(DIO)以及PM6(DIO)/IT-4F。随后,我们以低LC相变温度(112.8℃)的LCSM DFBT-TT6作为第三组分,基于高效的非富勒烯体系PM6:Y6构建三元有机太阳电池(TOSC)。为了揭示LCSM DFBT-TT6对TOSC性能的影响并同时消除分子结构等其他因素的影响,进一步合成了具有低玻璃化转变温度、结构相似的非LCSM DFBT-DT6作为对比。证明了LCSM自组装特性在形貌调控方面的独特优势。有利的形貌演变与改善的结晶度、相分离,促进了电荷的转移、激子的解离和收集,最终促进器件性能的提高。最后,基于高效的非富勒烯体系PM6:Y6,我们又使用星型小分子TF1作为第三组分,不同于常用的线性共轭结构的第三组分,这类分子具有星型结构的骨架,将其作为第三组分构筑TOSC,将会发挥与线性分子不同的调控作用。星型小分子TF1具有较高的LUMO能级,有助于提高Voc,并且该分子与主给受体有互补的吸收,扩大光吸收有助于器件Jsc的提升。TF1由于其本身的星型结构骨架,具有较大的空间位阻,可以有效抑制在成膜过程中分子链的过度聚集。优化活性层的形貌是提升器件性能的一个关键因素,探究添加剂和第三组分对活性层形貌的调控机制,对于促进器件性能的提高具有指导意义。
其他文献
随着风光等可再生能源的大量接入,传统电网并不能很好地应对可再生能源的波动性和随机性。同时传统经济模式逐渐加快转型,能源利用率低以及环保问题日益突出,而综合能源系统依靠其多能互补的特性,通过横向调节实现可再生能源的消纳和利用,成为未来发展能源互联网的基础。而对综合能源系统进行合理规划与设计是使用其提升能源利用率的必要前提,因此需要重点研究综合能源系统规划问题以保证其在环境,经济和社会效益等方面具有良
为了响应"十四五"的号召,加强国家建设,提高抢险水平,为防汛抗旱提供依据,做到有效防汛抗旱。本文简述了近年来全国各地的洪涝灾情及抵御灾情的常见措施,概述了"水利一张图"的概念、发展历程、关键技术及其应用,并且谈及了大数据、物联网、无人机、遥感等信息科技在洪涝灾害上的应用。根据现有水利信息化技术在洪涝灾害上应用的优缺点,提出防汛抗旱工作将往智能化、安全化、聚合化的方向去发展,另外也将在调度抢险和人员
在全球环境污染日益严重的背景下,发电规划决策越来越多地考虑经济效益与环境保护的相互协调,这成为一个多目标的问题。在发电规划决策中,反映经济效益的发电成本和对环境有重大影响的污染物排放量是反映经济与环境关系的两个相互冲突的目标。微电网智能化是未来发展的趋势,各类新型智能化技术不断在电网中应用,由于光伏发电、风力发电是高效环保的可再生能源发电方式,所以提高风光消纳比例是微电网系统经济运行的关键之一,同
直接空冷机组具有十分明显的节水优势,但由于直接空冷凝汽器直接与空气接触,换热管束易污染,受外界环境影响较大,使得直接空冷机组存在运行背压高且变化范围大等问题。机组运行背压是影响机组经济性的重要参数,且最佳运行背压在冷端系统运行中会受到环境温度、汽轮机排汽流量、风机转速和环境风等因素的综合影响,特别是在空冷凝汽器实际运行过程中,因环境风变化而产生的热风回流、倒灌等现象使得空冷凝汽器换热性能发生改变,
在能源需求和环境压力持续增加的大环境下,随着热电联产、电转气(power to gas,P2G)等技术的迅速发展,提高能源的利用率、增强不同能源的耦合能力成为了科研热点。微电网是一种耦合系统,它在生产、传输与消费过程中存在多种类型的能源。微电网具有需求侧响应快速及时和可以满足负荷的多种需求等优点,并以多能互补运行的方式提高能源的综合利用率。本文在总结了微电网优化调度和需求响应研究现状后,鉴于现在的
在社会经济发展和城市化进程的改善下人们对建筑工程提出了更高的要求,风景园林设计成为建筑工程的重要组成,风景园林设计在建筑施工中的融入推动了该领域的深化发展。为了能够提升风景园林设计的成效,需要在其中融入人性化设计理念。文章在阐述风景园林人性化设计内涵的基础上,分析风景园林人性化设计原则,并从多个方面具体分析人性化设计在风景园林设计中的应用。
锂离子电池因其能量密度高、循环寿命长等优势而被广泛应用。隔膜作为锂离子电池的四大主要部件之一,其结构和性能至关重要。目前的锂离子电池中,隔膜材料绝大多数为聚乙烯(PE)或聚丙烯(PP)为代表的聚烯烃。聚烯烃隔膜具有良好的机械性能,稳定的电化学性能等诸多优点,但是其缺点也很突出,即隔膜对电解液的润湿性差影响电池的电化学性能,以及隔膜热稳定性差制约电池的安全性,甚至在极端情况下引起自燃或爆炸。本论文以
综合能源管理系统作为能源互联网的重要组成部分,电能与清洁能源通过综合能源管理实现协同调度,有效提高能源利用效率,解决新能源消纳问题。合理利用售电公司桥梁优势,整合发电侧、售电侧、用电侧综合能源管理资源,对提升公司效益和促进新能源消纳具有重要意义。首先,分析需求响应、清洁能源管理和签订储能容量租赁合约等三种售电公司能源管理方式基本原理,以电网模块、负荷预测模块和电价预测模块作为指导模块,综合能源管理
碱金属离子二次电池已成为具有实用商业价值或潜在应用的高效储能系统。其中锂离子电池因为具有高比能,低自放电,无记忆效应和长循环寿命的特点,已成为当今便携式电子产品的主要储能电源。Na+和K+在许多方面具有与Li+相似的化学性质,因此钠离子电池和钾离子电池也被认为是可以替代锂离子电池的大型储能电池系统之一,而开发具有高比容量和优良循环稳定性的负极材料是进一步发展碱金属离子电池的关键。本文对两种的不同的
通过二次电池系统有效地储存间歇性电力被认为是缓解能源危机和环境污染的最重要解决方案之一。锂硫(Li-S)电池由于其优越的理论比容量(1672 mAh g-1)和能量密度(2600 Wh kg-1)以及储量丰富和环境友好的原料硫,已成为一种很有前途的新一代储能技术。然而由于硫及其放电固体产物的导电性差、充放电过程中的大体积膨胀、液相多硫化物(Li PSs)的“穿梭效应”和锂负极的枝晶生长等问题导致L