论文部分内容阅读
本文通过真空熔炼制备了3J33马氏体时效钢,在研究3J33马氏体时效钢时效硬化行为的基础上,借助光学显微镜、扫描电镜、透射电镜以及X衍射等分析手段探索了3J33马氏体时效钢时效过程和循环相变晶粒细化过程中的组织演变规律;利用万能电子拉伸试验机、洛氏硬度仪和显微硬度仪对材料力学性能进行测试;对原有的循环相变晶粒细化工艺进行了优化,并对3J33马氏体时效钢表面机械研磨晶粒细化工艺进行了初步探索,为最终实现3J33马氏体时效钢组织纳米化并具有优良的综合性能提供依据。研究结果表明,3J33马氏体时效钢不同温度时效过程中表现出相似的时效硬化行为,时效不存在孕育期,普遍存在两个时效硬化峰;时效初期硬度增加极快,迅速达到第一个时效硬化峰,此时可观察到基体衍射斑点拉长,说明3J33马氏体时效钢时效初期发生了调幅分解;时效后期随着时效时间的延长,硬度的上升趋势缓慢,并逐渐形成第二个时效硬化峰,此时对应着析出相不断地析出并长大过程。3J33马氏体时效钢α′?γ等温循环相变细化晶粒工艺研究结果表明,3J33马氏体时效钢的再结晶温度为900℃;3J33马氏体时效钢900°C,15min ,5次循环细化工艺处理可获得良好的晶粒细化效果,晶粒最终尺寸可达8μm左右;循环细化并没有改变时效析出行为的本质,但可加速时效的动力学过程;材料经循环细化时效后,抗拉强度σb可达2048MPa,延伸率δ可达9.82%,表现出良好的综合力学性能。表面机械研磨(SMAT)的研究表明,经过60min SMAT处理后,试样表面产生厚度约为15μm的变形层,塑性变形程度随距离表面深度的增加而逐渐减弱;试样表面可形成500nm左右的亚晶粒,在亚晶粒内部和其边界处有高密度的位错、层错存在;试样最表面的显微硬度可以提高100HV,从试样表面到基体,显微硬度逐渐减小,直至到与基体持平。