论文部分内容阅读
生物大分子及其衍生物和聚电解质高分子之间的相互作用在过去10年里已经受到了广泛的关注。在这些体系中,聚电解质的离子链段和反电荷生物大分子相互作用可以形成生物大分子-聚电解质高分子胶束。合成聚电解质高分子可以诱导产生多种生物活性,例如加强抗体响应。生物大分子及其衍生物具有独特的物理化学性质和良好的生物相容性与生物降解性,已逐渐应用到各种材料领域,包括医用纳米微球。纳米材料是化妆品和制药行业的理想材料。另外,将绿色化学和纳米材料有效结合起来是当今的一项重要课题。采用一种无毒的、可再生的生物大分子来代替有害的有机化合物制备金属纳米材料是一种最好的选择。在本论文中,首先采用原位自组装的方法研究了丙烯酸在明胶和牛血清蛋白模板上原位自组装的过程以及纳米胶束形貌与制备条件、高分子模板的关联性,最后还系统的研究了这些纳米微球的各项性能。为了研究不同单体在模板上的组装情况,我们将丙烯酸更换为银离子研究了它在明胶模板上的络合,同样得到形貌均一的纳米材料。将得到的纳米材料在光的引发下反应就可以形成均一稳定且水溶性的纳米金属材料。开展的工作主要有以下三个方面的:(1)通过原位自组装法,即丙烯酸(AA)在明胶(Gel)模板中边聚合边组装,成功制备了具有窄分布的核壳结构纳米微球。用动态光散射(DLS)和电泳光散射技术来跟踪微球的自组装过程。实验表明微球粒径和表面电荷随着反应进行不断降低。通过FT-IR、TEM和AFM表征了微球结构和形貌特征。研究了聚合过程中多个条件对微球结构和形貌的影响,如溶液pH值、浓度、AA与Gel的重量比等。实现了通过控制实验条件来控制微球粒径和结构的目的。纳米微球具有多重响应特征,当纳米微球pH值从2.8增大或者降低时,其大小都会发生变化,纳米微球粒径随着溶液中盐浓度的增加先有少许降低随后逐渐增大。更重要的是通过模板法得到的微球比滴加法得到的微球有更强的抗盐能力。除此以外,微球还具有温度响应特性,这一特殊性质和Gel的凝胶化特性密切相关。最后,微球结构可以通过戊二醛进行选择性交联,交联后的微球有更好的稳定性和更宽的pH值适应性。随着交联度增加,微球粒径先降低后增加,但是微球溶胀比呈逐渐下降的趋势。(2)为了研究原位自组装的普适性,我们首先将模板从线性分子明胶变化为体型的生物大分子牛血清蛋白。首先通过滴加法成功制备了聚丙烯酸/牛血清蛋白纳米微球,PAA/BSA。通过DLS和浊度法表征实验过程,找到了制备微球的最佳条件,其中pH值范围在2.3到3.1之间,形成均一稳定的纳米微球PAA,最低分子量在8K到15K之间,BSA和PAA重量比在3到8之间。为了提高微球稳定性,采用戊二醛对微球结构进行固定,所得微球在中性条件下可以稳定保存2个月以上。研究不同交联度下中性微球光强和PDI,找到了微球的最佳交联度在20%。采用FT-IR分析了PAA/BSA纳米微球中的成分及两个高分子间的相互作用,推断出两个高分子之间是通过电荷和氢键键合的。AFM和TEM观察可以发现微球的形貌是大小约为70nm的球型。PAA和BSA均为聚电解质,PAA/BSA纳米微球具有双重敏感性能,即pH敏感性和盐敏感性。PAA/BSA纳米微球的pH敏感性机理采用了浊度法和芘探针的荧光光谱进行了研究。另外,同样采用原位自组装法制备了PAA/BSA纳米微球。采用TEM跟踪了自组装过程,研究发现PAA/BSA纳米微球是通过PAA/BSA聚集体的疏水作用诱导聚集形成的,其结构为类梳状结构,其平均长度在92nm,宽度在26nm。通过DTS表征找到了微球最佳制备条件在pH值2.3到3.1之间,微球浓度在3到30mg/ml,PAA和BSA比例在2到3之间。该微球和PAA/BSA纳米微球一样具有pH敏感性和盐敏感性,但是胶束对pH和盐的敏感性大为降低,这可能和微球的梳状结构有关。(3)AA在Gel模板上可以自组装形成疏松结构的纳米材料,如果采用无机离子取代AA在Gel模板上自组装,是否可以形成很好的纳米材料昵?本实验通过自组装的方式首次制备出Ag~+/Gel纳米微凝胶,该微凝胶的大小在纳米尺度,大约为126nm。Ag~+和Gel中的羧酸正负电荷相互作用促进了微凝胶疏水性的增加,诱导了微凝胶的形成。通过Gel中酪氨酸的天然荧光发射性能研究了纳米微凝胶中Ag~+和Gel的相互作用。研究发现,Ag~+对Gel的荧光有淬灭作用,其淬灭机理属于静态淬灭。通过计算作用点数发现,在中性条件下,Ag~+和Gel相互作用最强。最近几年,通过无毒的、可再生的生物大分子代替有害的有机化合物来制备金属纳米微球是一种降低污染的有效方法之一。在本实验中,结合前面制备的Ag~+/Gel纳米微凝胶,发展了一种一步法制备金属纳米粒子的新途径。首先通过自组装的办法得到Ag~+/Gel纳米微凝胶。随后,我们在中性条件下对上述溶液进行光照,得到了Ag/Gel纳米粒子。该粒子中,具有水溶性和生物相容性生物高分子Gel作为Ag纳米粒子的保护剂,同时它又是Ag~+的还原剂。通过TEM和UV光谱跟踪了实验过程。研究表明该实验方法制备的Ag纳米粒子是均一的,其粒径大小被有效的控制在10nm左右。