论文部分内容阅读
本文在综合评述了锂离子动力电池的研究现状的基础上,系统地研究了锰酸锂和磷酸铁锂电池动力电池的制作与性能,通过对锂离子电池正极、负极和电解液等关键材料进行表征和分析,研究和改进锰酸锂电池的电化学性能、储存性能和安全性能及机理,研究了磷酸铁锂电池的制作和性能及作用机理。系统地比较研究了几种不同LiMn2O4、负极和电解液样品的结构与性能。最后选取了合适的LiMn2O4,石墨以及电解液作为锰酸锂电池的关键材料。电极容量比分别为1.33、1.19和1.08的锰酸锂电池中LiMn2O4放电比容量分别为101,105和107mAh/g。170次循环容量保持率分别为87.3,85.4和84.1%。在电池正极组分中添加2%的Li2CO3,MgO和LiF,LiMn2O4的放电比容量分别为106.1,107.2和107.5mAh/g。100次循环容量保持率分别为90.8、91.8和93%。LiF的含量为2%时效果最佳。当正极极片面密度为2.5 g/dm2,导电剂含量为3%时,20C放电容量为1C放电容量的94.1%。1C充5C放100次循环容量保持率为92%。配置EC:EMC:E=2:7:1,lmol/L LiPF6的低温功能电解液,研究发现在-40℃下,以0.2和1C放电,分别放出常温容量的81.1和63.4%。锰酸锂电池半荷电储存一个月后容量恢复率为96.3%,100次循环容量保持率达到94.1%。通过XRD、SEM、TEM和XPS研究表明,储存后MnO2、R-CO3Li、Li2CO3、LiF和LixPFy等共同组成正极表面钝化膜,LiMn2O4晶格发生氧缺陷现象。储存前后LiMn2O4电极峰电流分别为0.55和0.36mA,电极和电解液界面的吸附双电层阻抗分别为20.28和53.3 1Ω。LiMn2O4的交换电流密度为0.69和1.01mA/cm2。负极SEI膜增厚并变致密,阻抗由183.1增大到310Ω。储存后电解液中LiPF6发生了一定程度的分解,溶剂被氧化生成小分子物质。电极表面极化、正极材料中Mn溶解以及氧缺陷、SEI膜增厚所消耗的活性锂、电解液的分解和氧化是导致储存后锰酸锂电池储存后容量衰减的主要原因。高温储存研究发现锰酸锂电池在第一天内容量损失最大,此后每天损失的容量逐步减少。锰酸锂电池的循环稳定性的改善程度随着储存时间的延长而增加。随着储存时间的增加,正极表面钝化膜不断增厚,LiMn2O4晶格不断发生收缩并变稳定,颗粒/电解液界面积减小,电极氧化性减弱,从而导致容量衰减变慢。放电态和满电态下储存锰酸锂电池容量恢复率分别为99.2%和93.5%。满电态下储存的锰酸锂电池循环稳定性改善最大。荷电态对储存后容量衰减的影响主要是由Mn溶解量的不同以及储存后正极表面极化不同而引起的。随着荷电态的增加,Mn4+可能先被还原成Mn3+,进而发生歧化反应生成Mn2+,从而导致容量衰减增大。正极表面钝化膜将LiMn2O4材料与电解液分隔开;LiMn2O4的晶格收缩,稳定性增强;负极SEI不断地增厚和变致密可能是储存后锰酸锂电池的循环稳定性改善的原因。在锰酸锂正极中添加LiF,半荷电储存后电池的容量恢复率从96.3%提高到98%。研究表明LiF能够有效地抑制Mn的溶解并且降低储存后正极表面的阻抗。锰酸锂电池(347080-16Ah)在热冲击、穿刺、短路安全测试下未爆炸。3C/10V过充测试电池发生爆炸,电池表面最高温度达到290℃。爆炸后粉末的主要成分为C、MnO和Li2CO3。当电压达到5.0V,正极材料表面出现了大量的裂缝。裂缝的出现导致过充后期电压和温度急剧上升直至爆炸。采用Al2O3包覆的LiMn2O4制作锰酸锂电池,经过3C/10V过充后不爆炸、不起火。研究比较了3种不同LiFePO4的结构与性能。研究了碳纳米管(CNT)对磷酸铁锂电池性能的影响。添加CNT后,1C/0.1C的放电比容量比值由原来的92.1提高到96.3%,0.1C的放电容量都为124mAh/g;磷酸铁锂电极的电荷反应阻抗由173.1Ω减小为36.88Ω,极化减小,电池200次循环容量保持率由原来的93.7提高到96.6%。采用PVDF和LA133为粘结剂的LiFePO4的1/3C放电比容量分别为124和120mAh/g。200次循环容量保持率分别为96.3%和93.2%。采用两种LiFePO4复配体系,制作347080磷酸铁锂动力电池。10C/1C的放电容量比值为95.9%,3C充电10C放40次循环容量保持率为96.9%。磷酸铁锂电池在热冲击、过充、穿刺、短路等滥用条件下均未发生爆炸起火现象。