论文部分内容阅读
本文以Flory凝胶溶胀理论和Tanaka的水凝胶相变理论为基础,引入交联效率、物理交联作用和链段伸展状态变化等的影响,修正并建立了水凝胶溶胀平衡热力学模型和温度—凝胶扩散系数模型。在此基础上,针对温敏性水凝胶和高吸水性树脂存在问题,从分子结构设计入手,提出强化水凝胶表面交联的新思路,对表面强化交联温敏性水凝胶和高吸水性树脂的合成、结构和性能进行深入研究。论文研究成果为水凝胶理论的发展和应用打下良好的基础。 针对水凝胶结构和性能基础研究少,现有的热力学模型不能真实地描述和直接预测水凝胶溶胀行为,论文在Flory-Rehner弹性自由能理论基础上,首次引入交联效率和物理交联作用的影响,建立新的更为精确的水凝胶溶胀平衡热力学模型。该模型能较好地仿真N-异丙基丙烯酰胺-丙烯酰胺(PNIPA-AM)共聚物水凝胶的平衡溶胀过程。基于Tanaka凝胶溶胀理论导出凝胶网络扩散系数,继而研究扩散系数与凝胶合成工艺条件的关系,发现:凝胶网络扩散系数随交联剂用量的增加先减后增,随引发剂用量的增加、或单体浓度的提高、或环境温度的升高都单调地增大。考虑到高分子链段在溶剂中伸展缠绕状态的变化,建立了凝胶网络扩散系数—温度模型,该模型能更精确地预测实验结果。 在理论研究的基础上,针对常规水凝胶存在的响应速度慢、吸水后力学强度低、耐盐性较差等问题,从分子结构设计和入手,提出采用N,N’-亚甲基双丙烯酰胺/二乙烯苯(BIS/DVB)复合交联剂进行表面强化交联的创意,优化凝胶结构,研究聚合工艺—凝胶结构—性能之间的关系,并合成了综合性能优化的温敏性水凝胶和高吸水性树脂。 1、采用紫外光谱技术与表面扫描电镜观察相结合,证实了树脂表面强化交联结构的存在。研究发现:调节DVB加入时刻可控制强化交联表层的厚度,亲水性交联剂BIS对树脂凝胶分率的影响较亲油性交联剂DVB更为明显。 2、通过反相悬浮法并采用亲水/亲油复合交联剂(BIS和DVB)制备表面强化交联的温敏性聚N-异丙基丙烯酰胺(PNIPA)树脂,得到优化的聚合工艺条件。PNIPA水凝胶的低临界溶解温度(LCST)较采用单一交联剂的低(32~34℃)、温敏响应时间短(100s左右)。PNIPA的浓缩分离性能研究发现:随着溶质聚乙二醇