论文部分内容阅读
荧光光谱技术凭借其灵敏度高、方便快捷、稳定性好等优点,被广泛应用于指纹识别、化学检测和生物成像等领域。但是在实际应用中只有少量的荧光分子可以满足高量子效率、大散射截面等要求。因此,如何能够有效增强荧光强度成为了众多科研人员的研究目标。在外电磁场激发下,借助金属纳米颗粒的局域电磁场增强,可以实现附近荧光分子荧光强度增加。研究发现,金纳米棒是金属纳米颗粒实现荧光增强的重要衬底之一,并且衍生了许多复合结构。其中,由于金属核壳中产生的热点会进一步增强局域电磁场,所以金-银核壳纳米棒构型被大量应用在表面增强领域。由于传统荧光测量方法是对大量颗粒进行荧光数据采集,颗粒之间的相互作用会对观测结果造成影响。本文将利用纳米定位技术,通过对单颗粒Au@Ag@SiO2-dye核壳纳米结构的荧光信号原位检测,研究了壳层厚度对荧光增强和各向异性纳米结构对入射光偏振依赖关系的影响。论文主要研究内容如下:1.设计合成了金纳米棒结构。通过改变硝酸银与抗坏血酸的加入比例实现金纳米棒长径比的调控,长径比的变化可以调节等离激元共振(LSPR)峰的位置;利用湿化学法在金纳米棒表面还原生成银壳,制备了Au@Ag核壳纳米棒状结构;利用改进的Stober法和一步包埋法成功制备了 Au@Ag@SiO2-dye纳米结构。2.采用原位单颗粒采集技术,研究了激发光波长、LSPR峰、荧光发射峰三者耦合程度对Au@Ag@SiO2-dye单颗粒荧光强度的影响规律。通过调节研究Au@Ag@SiO2-dye结构中SiO2-dye层厚度,研究了分子分布状态变化对增强荧光效应的影响。结果发现,当壳层厚度为5 nm时,荧光增强效果最好,增强倍数可达127倍。3.研究了单颗粒Au@Ag@SiO2-dye纳米棒状结构的荧光增强对激发光偏振角性质的依赖特性。结果发现,随着入射光偏振方向的改变,不同的表面等离激元模式会被激发。且局域电磁场增强模式也随之改变,最终改变荧光增强效果。当入射光偏振方向垂直于金属棒状纳米结构的长轴时,荧光增强效果最强,反之最弱。同时通过有限元仿真计算,进一步研究了 Au@Ag@SiO2-dye增强荧光的入射光偏振依赖特性。