【摘 要】
:
随着存储器平面尺寸微缩技术逐渐逼近物理极限,摩尔定律放缓,基于相变存储器(PCRAM)的三维堆叠技术--3D XPoint存储器便引起了广泛关注。其兼具快速IO访问、高吞吐量以及非易失性等优异性能,是存储技术历史上的重大突破。但其相关技术尚不成熟,为实现大规模量产化,提高市场竞争力,仍面临着在制造成本、工艺复杂度以及器件结构上的严峻挑战。现有的基于水平电极堆叠的3D XPoint存储器未解决多维堆
论文部分内容阅读
随着存储器平面尺寸微缩技术逐渐逼近物理极限,摩尔定律放缓,基于相变存储器(PCRAM)的三维堆叠技术--3D XPoint存储器便引起了广泛关注。其兼具快速IO访问、高吞吐量以及非易失性等优异性能,是存储技术历史上的重大突破。但其相关技术尚不成熟,为实现大规模量产化,提高市场竞争力,仍面临着在制造成本、工艺复杂度以及器件结构上的严峻挑战。现有的基于水平电极堆叠的3D XPoint存储器未解决多维堆叠带来的电极高度差等问题,这限制了3D XPoint存储器往更高层的堆叠集成技术的发展。本研究便基于此背景,设计出相应的工艺优化方案,以实现3D XPoint存储器绝缘层的平坦化,从而实现更高密度存储器件的设计。主要研究内容如下:(1)介绍刻蚀工艺的基本原理。基于本研究的需求以及反应离子刻蚀(RIE)的刻蚀速率可控、刻蚀后表面形貌较好等特性,优化存储器制备工艺流程,利用RIE实现刻蚀平坦化。(2)为实现最佳性能,应使Ge2Sb2Te5和SiO2两种材料刻蚀速率相近且刻蚀表面粗糙度小,设计具体的实验方案,调整RIE中气体比例、射频功率以及反应腔内压强等刻蚀条件参数,配合紫外光刻、磁控溅射、PECVD等工艺,制备出不同刻蚀条件下的样品。(3)通过AFM、SEM等半导体表征技术,研究CHF3/Ar、CHF3/O2两种气体环境下RIE的刻蚀结果并分析各种刻蚀条件参数对刻蚀结果的影响。当使用CHF3/O2混合气体刻蚀,且刻蚀条件为O2浓度20%、射频功率150W、压强50mtorr时,得到最佳刻蚀结果,此时两种材料的刻蚀速率都约为53nm/min,表面粗糙度RMS分别为1.33nm,0.97nm。该结果既保证了刻蚀速率的相近,又得到了光滑的表面,满足了平坦化的要求。(4)使用Material Studio软件的Dmol~3模块对Ge2Sb2Te5相变材料刻蚀反应的化学过程进行了第一性原理分析,分析其氟化反应过程。
其他文献
水面无人艇(Unmanned Surface Vehicle,USV)具有自主规划航行轨迹的能力,在海洋资源勘探与开采,海洋水文监测,海洋生物研究,通信中继,海洋气象预报等领域中具有广阔的应用前景。本文针对以母船艉部滑道实现无人艇回收的问题,研究无人艇的动力匹配以保证无人艇动力系统具备对母船的足够跟踪能力,并研究相应的跟踪控制算法。首先,针对无人艇系统设计过程中存在的动力匹配问题,在充分利用动力匹
随着半导体产业的不断发展,芯片器件的特征尺寸微型化已接近瓶颈,为延续“摩尔定律”发展模式,学术和产业界均不断在工艺和新型半导体材料方面寻找突破。作为一类原子级厚度晶体,二维材料以其优良的光电性能在众多半导体材料中脱颖而出。在二维材料应用于光电芯片制备的过程中,对其物理化学性质进行精确的表征是一项重要的工作,以二维材料的层数为例,传统表征手段如原子力显微镜、扫描电子显微镜及拉曼光谱等为我们提供了多种
随着摩尔定律发展速度逐渐减缓,MOSFET特征尺寸的继续缩小面临诸多物理极限的限制,如源漏急剧增加的串联电阻。为此,肖特基势垒源漏MOSFET(SB-MOSFET)应运而生,它能显著降低源漏区的寄生电阻。另一方面,高迁移率沟道材料(Ge和Ⅲ-Ⅴ族化合物半导体)有望代替硅作为CMOS器件的衬底材料,成为国际研究热点。但由于Ge与金属接触较高的界面态密度,会产生“费米钉扎”效应,部分抵消了SB-MOS
超材料作为一种亚波长尺度的人工周期性复合材料,具备自然界材料无法实现的超常物理特性。通过对超材料基本结构单元的设计,实现对电磁场中场分量进行独立构造,可为吸波材料设计和电磁特性调控带来更多自由度。随着雷达隐身应用环境的复杂化,斜入射超材料吸波设计成为热点问题。本文主要工作内容如下:1.计算自由空间波阻抗,探索不同极化方式的波阻抗随入射角度的变化规律。通过推导不同极化波的布儒斯特角,探究了不同极化波
与微波通信相比,空间激光通信以激光为载体,在通信速率、系统体积、质量、功耗、安全性上都有着很大的优势。在空间激光通信系统的终端间建立并保持通信链路的过程中,需要快速、准确地进行光束的捕获、瞄准与跟踪,其中,入射光束相对接收天线的偏差角度高精度、快速测量对捕获效率、跟踪精度都起着决定性的作用。激光束经过长距离大气传输后,在探测器面形成的光斑图像信噪比低、光斑形状不规则,必须设计合适的光斑定位算法才能
陶瓷谐振腔滤波器是5G通信领域的重要组成部件,其加工精度直接影响部件安装,以及通信链路中信号频率选择和控制。因此,本论文对准确测量陶瓷谐振腔滤波器的三维尺寸展开研究。对陶瓷谐振腔滤波器进行三维尺寸测量,其难点在于该滤波器结构复杂、待测位置较多。通过分析目前国内外有关自动化三维尺寸测量技术的研究,并结合陶瓷谐振腔滤波器本身的结构特点,搭建了一套基于条纹投影的单目测量系统。利用上述系统获得陶瓷谐振腔滤
随着MnZn铁氧体功率器件不断朝着高频应用的方向发展,器件发热温升问题越来越得到人们的重视。一方面,在材料中引入不同类型的添加剂降低高频损耗是目前解决发热问题的主要手段,对于传统添加剂的影响人们已经十分清楚,但对于稀土添加剂的影响仍缺乏系统认知;另一方面,MnZn铁氧体磁心的导热性能对元件散热效果也有直接影响,因而MnZn铁氧体的热导率值得我们关注分析。本文采用传统固相烧结工艺分别制备了Sc、Dy
基于传统能源日益枯竭的现状以及其产生的环境污染问题,探索绿色新能源迫在眉睫。锂电池作为动力电池中比较典型的电池类型,凭借其能量密度高、性能稳定、污染小和可循环寿命长等优势广泛应用于智能设备、新能源汽车等领域中。在锂电池工作过程中,电池性能会随着电池内部电化学反应副产物的积累而逐渐退化,电池寿命无法达到理想状态值。当电池寿命终止而未及时更换将会引发重大安全事故,威胁人的生命和财产安全,因此对电池的健
心血管结构包括主动脉循环和心肌微循环,实现对它们的高分辨率、无创成像是当前临床亟待解决的技术难题。超声具有对活体心血管结构进行无创、可靠、高分辨率成像的潜在应用。对此,本课题前期已搭建了超声成像系统,在此基础上,本文为该成像系统设计了超声超谐波合成孔径聚焦成像算法,使该成像系统具有对心血管结构进行无创、高分辨率成像的可行性,相关的研究内容主要包括以下四个部分:首先,对高分辨率、高对比度超声成像方式
半导体气体传感器具有灵敏度高和检测对象广的特点,但高温制备、高温工作使其难以实现低功耗和集成化需求。随着微电子技术迅猛发展,硅基MEMS微热板技术成为解决半导体气体传感器微型化和低功耗的有效途径。基于传统气敏厚膜浆料的半导体气体传感器在高温下会影响MEMS微热板的热稳定性,而胶体量子点作为一种“准零维”无机半导体纳米晶,可实现低温制备、低温工作,且其表面效应、量子限域效应以及可溶液加工的特性使其具