论文部分内容阅读
高端智能制造是未来制造业的竞争中心,也是国家核心竞争力的重要标志,因此针对高科技、精密、尖端的机械工业装备的智能运行与维护保障已成为国内外的研究焦点。高速、重载、高温、高寒等极端的服役环境,致使机械装备的关键传动件的性能不可避免地出现衰老、退化等趋势,甚至时有故障发生而引发停机等事故。因此开展针对机械装备关键传动件的智能监测和故障诊断的研究,可以准确及时地对装备的整个运行过程进行全周期的监控和维护,以保障安全、可靠地运行,从而避免经济损失和灾难性事故的发生。机械装备的关键传动件如齿轮箱、轴承长期在变工况下运行,因局部故障、瞬变转速、时变载荷等激励的影响,关键传动件将产生瞬变动态、非平稳振动信号。对变工况的处理,尤其是对变工况产生的瞬变动态、非平稳信号的解调分析问题已成为关键传动件智能监测和故障诊断的重要研究课题。尽管当前的非线性、非平稳信号处理技术已经取得了长足的发展并在一定的工业场合得到了应用,但是其仍未能适应变工况变化,尤其是无法满足因变工况下机械关键传动件产生的时变、瞬态、非平稳信号的分析需求。为此,本文以机械装备面临大数据、智能运维的重大工程需求为背景,以对机械装备健康监测和故障诊断趋向自动化、智能化以及数字化方向发展为目标,针对当前传统的时频分析方法无法满足变工况下快时变、强调频、交叉混叠的非平稳瞬态信号的分析要求,研究了时频空间能量表征方法、交叉混叠信号的解耦方法、健康状态监测中阈值设定自适应方法、时变服役工况下智能诊断和不同工况域之间的迁移诊断等基础科学问题和实际的工程应用技术。解决了对快时变、强调频、交叉混叠、非平稳信号的解调分析及对变工况自适应诊断的问题。论文的主要研究工作及创新点总结如下:(1)针对当前主流的时频分析方法在表征快时变、强调频瞬态非平稳信号时,存在时频能量汇聚性低、时频表征性能差、对特定信号分量的重构性能不足以及对设备健康诊断过程的影响问题,提出了一种基于短时傅里叶框架下的二阶同步提取变换的信号分析方法,重点解决了对瞬态非平稳信号的局部瞬时频率精确化估计问题,从而满足了对频率变化快及强调制的非平稳信号的分析需求。以此为基础,实现了在强背景噪声环境下对变化快且强调制的瞬态信号成分的有效提取,并将其成功应用于油膜轴承的振动信号分析中。(2)针对机械装备振动信号中出现快时变、强调频以及交叉频率成分的耦合时,传统的时频解调分析方法受到时频表征不强、时频可读性能差甚至出现时频解调失效的制约。提出了一种递归映射解调高阶同步提取变换的时频分析方法。重点解决了外界干扰的交叉混叠信号成分的解调及对局部瞬时频率的高阶化精确估计问题,以此为基础,并最终将其应用于机械装备的关键传动件行星齿轮箱的特征提取及故障检测、诊断中。(3)针对某些特定的机械装备如风力发电机组,因运行周期久、使用寿命长,故而故障数据非常稀缺。当前的无监督深度学习方法在对风机健康状态监测时,面临人工设定阈值函数的瓶颈,提出了一种阈自适应神经网络模型的风机健康监测方法。解决了当前基于深度学习的无监督健康监测方法在阈值函数人工设定上的难题。同时,为了进一步量化不同时期风机的健康等级,提出了一种基于生成对抗网络输出样本区分度的方法,以满足对风机的不同健康等级进行量化评估的需求。以此为基础,通过对两个实际运行的风机进行健康状态监测评估以验证所提出算法的准确性及稳健性。(4)针对常规的信号处理方法对机械装备海量数据进行故障检测与诊断时耗时、耗力、过多依赖于人工经验以及为适应变工况下的诊断需求问题,提出了一个工况自适应神经网络模型来对机械装备的关键传动件行星齿轮箱进行故障检测、诊断。解决了时变工况下对关键传动件的端对端学习问题,以此为基础,通过对实际运行的行星齿轮箱的数据采集分析以验证所提出算法的有效性。(5)针对当前的样本迁移学习模型大多拘泥于源域和目标域之间的数据差异性,极少关注机械装备运行服役工况信息对模型训练的驱动作用,尤其是不同的非平稳工况之间的迁移学习问题。提出了一种新的知识迁移学习模型用于对时变工况下的滚动轴承进行故障检测、诊断。解决了不同的非平稳工况之间的迁移学习问题,以此为基础,通过对实际运行的滚动轴承运行数据的分析以验证所提出的知识迁移学习模型的有效性和鲁棒性。