Fine-Grained Visual Categorization: from Weak to Strong Sup ervision

被引量 : 0次 | 上传用户:cctvnba_2008
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Object recognition has been extensively studied in the history of computer vision as one of the most fundamental problems.Among years,the research objective has evolved drastically,especially with the growth of data scale available on the web.In this dissertation,we study one of the latest and most challenging ob ject recognition tasks-fine-grained visual categorization(FGVC).Inparticular,we consider several practical issues for conducting FGVC in real-world applications,including classification accuracy,generalization ability,model interpretation and runtime e?ciency.To do so,several FGVC algorithms are proposed to cover application scenarios where various kinds of supervision are provided for training models. The main con-tribution of this thesis,therefore,is to propose a general pipeline for conducting fine-grained visual categorization in a variety of real-world applications based on the proposed algorithms.  Our first work aims to improve the generalization ability of FGVC algorithms by reducing the extensive requirement of human-labeled annotations.We study FGVC under the weakest form of supervi-sion,where only image-level labels are provided for training.For this challenging task,the proposed weakly supervised FGVC al-gorithm employs the widely used multi-instance learning framework,but conducting a carefully designed initialization strategy via a novel multi-task co-localization algorithm.The localization results,mean-while,also enable object-level domain-specific fine-tuning of deep neu-ral networks,which significantly boosts the performance.  Our second work targets on further improving the classification accu-racyof FGVC.Motivated by the recent success of part-based models and deep convolutional features in FGVC,the proposed method fol-lows a semi-supervised framework that exploits inexhaustible web data to augment existing strongly supervised FGVC datasets,so that the scale of extensive labeled training data could keep pace with the rapid evolution of the convolutional neural network(CNN)architec-tures. Our key discovery is that by transferring explicit knowledge learned from strongly supervised datasets using sophisticated object recognition methods,each web image can now carry additional do-main specific knowledge,which leads to an increased information gain.The proposed method achieves state-of-the-art performance on sev-eral FGVC benchmarks,where the improvement comes from both the perspective of features and classifiers.  In addition to the pursuit of the classification performance,we also investigate a set of other practical issues on performing FGVC in real-world applications,i.e.,the model interpretability and runtime e?ciency.Implementing asa strongly supervised FGVC algo-rithm,a novel Part-Stacked CNN architecture is proposed,which is able to run at real-time by utilizing a set of computational sharing and architectural sharing strategies on multiple ob ject parts,and provide human understandable visual manuals for explaining the classifica-tion results through part-level analysis.Experiments are conducted to evaluate the algorithm with respect to the classification accuracy,runtime e?ciency and also the quality of model interpretation.
其他文献
微电子技术、嵌入式计算技术、无线通信等技术的发展推动了无线传感网络迅速发展。无线传感网络主要由传感器、感知对象和监测者三个要素组成。无线传感网络应用非常广阔,如
移动自组织网络是一种对等网络。无需固定基础设施,能够快速地为军事或民事应用构建网络平台。近年来,实时业务、交互式业务需求的持续增加对移动自组织网络性能提出了更高的
由于无线中继网络相对于传统的点对点通信方式在传输能力方面有很大的提升,并能利用网络中的中继节点作为虚拟多天线为单天线的终端带来分集增益,进而引起了通信界的广泛关注
OFDM技术因为其在频谱利用率、抗干扰能力等方面独特的优越性,受到了学术界和产业界的广泛关注,更是在今天的地面移动/无线通信系统中广泛应用。同时,卫星通信因为其一些特性
介绍了一种一体化的城市电网数据库管理系统模型以及它的设计原则.实时数据库、商用关系数据库和数据接口三者相辅相成构成了本系统的一个记录、保持和操作数据信息的有机体,
移动自组织网络(MANET)技术是目前通信网络领域内的一项新兴技术,其中对路由协议的研究是该技术的研究热点和难点。由于MANET具有灵活的组网方式和良好的健壮性等优点,应用范
随着卫星通信的应用日益广泛,接入卫星的用户数和业务种类不断增多,这些都对卫星通信系统提出了新的挑战。高效利用稀缺的带宽资源为日益增多的用户提供满意的服务质量,已成
学位
本课题以CT技术为核心,以投影重建算法作为研究对象,以最优的再现重建图像为目标。针对CT图像(检测对象)寻找设计出较优的重建算法。本文应用雷登(Radon)变换的原理,阈值降噪
随着无线通信系统能量消耗的高速增长以及全球变暖等问题的凸现,提高系统的能量效率(EE)成为无线通信领域的一个研究热点。中继技术通过中继节点的协助来完成两个信源节点的